Attention-based Dual-Branches Localization Network for Weakly Supervised Object Localization

Wenjun Hui, Chuangchuang Tan, Guanghua Gu
{"title":"Attention-based Dual-Branches Localization Network for Weakly Supervised Object Localization","authors":"Wenjun Hui, Chuangchuang Tan, Guanghua Gu","doi":"10.1145/3469877.3490568","DOIUrl":null,"url":null,"abstract":"Weakly supervised object localization exploits the last convolutional feature maps of classification model and the weights of Fully-Connected (FC) layer to achieves localization. However, high-level feature maps for localization lack edge features. Additionally, the weights are specific to classification task, causing only discriminative regions to be discovered. In order to fuse edge features and adjust the attention distribution for feature map channels, we propose an efficient method called Attention-based Dual-Branches Localization (ADBL) Network, in which dual-branches structure and attention mechanism are adopted to mine edge features and non-discriminative features for locating more target areas. Specifically, dual-branches structure cascades low-level feature maps to mine target object edge regions. Additionally, during inference stage, attention mechanism assigns appropriate attention for different features to preserve non-discriminative areas. Extensive experiments on both ILSVRC and CUB-200-2011 datasets show that the ADBL method achieves substantial performance improvements.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Weakly supervised object localization exploits the last convolutional feature maps of classification model and the weights of Fully-Connected (FC) layer to achieves localization. However, high-level feature maps for localization lack edge features. Additionally, the weights are specific to classification task, causing only discriminative regions to be discovered. In order to fuse edge features and adjust the attention distribution for feature map channels, we propose an efficient method called Attention-based Dual-Branches Localization (ADBL) Network, in which dual-branches structure and attention mechanism are adopted to mine edge features and non-discriminative features for locating more target areas. Specifically, dual-branches structure cascades low-level feature maps to mine target object edge regions. Additionally, during inference stage, attention mechanism assigns appropriate attention for different features to preserve non-discriminative areas. Extensive experiments on both ILSVRC and CUB-200-2011 datasets show that the ADBL method achieves substantial performance improvements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于注意力的弱监督目标双分支定位网络
弱监督目标定位利用分类模型的最后一个卷积特征映射和全连通层的权值来实现定位。然而,用于定位的高级特征图缺乏边缘特征。此外,权重是特定于分类任务的,导致只发现判别区域。为了融合边缘特征,调整特征图通道的注意力分布,提出了一种基于注意力的双分支定位网络(ADBL)方法,该方法利用双分支结构和注意力机制挖掘边缘特征和非判别特征,以定位更多的目标区域。具体来说,双分支结构将低级特征映射级联到挖掘目标物体的边缘区域。此外,在推理阶段,注意机制对不同的特征分配适当的注意,以保留非歧视性区域。在ILSVRC和CUB-200-2011数据集上进行的大量实验表明,ADBL方法取得了显著的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1