Water Quality Prediction using AI and ML Algorithms

B. Nivedetha
{"title":"Water Quality Prediction using AI and ML Algorithms","authors":"B. Nivedetha","doi":"10.58414/scientifictemper.2023.14.2.46","DOIUrl":null,"url":null,"abstract":"Expeditious growth in industrial amelioration to support the country’s expanding population and economy has contaminated our water resources like never before. Water pollution is one of the most alarming concerns for us today. Prediction of water quality has grown in popularity in the field of water environmental science. Data-driven strategies are becoming increasingly fascinating and beneficial as we extend our understanding of water means. Data mining, which can manage the complexity within the provided data, is a direct method for exploration.","PeriodicalId":443629,"journal":{"name":"THE SCIENTIFIC TEMPER","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE SCIENTIFIC TEMPER","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58414/scientifictemper.2023.14.2.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Expeditious growth in industrial amelioration to support the country’s expanding population and economy has contaminated our water resources like never before. Water pollution is one of the most alarming concerns for us today. Prediction of water quality has grown in popularity in the field of water environmental science. Data-driven strategies are becoming increasingly fascinating and beneficial as we extend our understanding of water means. Data mining, which can manage the complexity within the provided data, is a direct method for exploration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用AI和ML算法进行水质预测
为了支持国家不断增长的人口和经济,工业改良的迅速发展对我们的水资源造成了前所未有的污染。水污染是当今最令人担忧的问题之一。水质预测在水环境科学领域的应用日益广泛。随着我们扩大对水资源的理解,数据驱动战略正变得越来越有吸引力和有益。数据挖掘是一种直接的探索方法,它可以管理所提供数据的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurement of agricultural productivity and levels of development in the Malaprabha river basin, Karnataka, India Assessing the role of EDTA and SA in mustard under Cd and Pb stress Trichoderma atrobrunneum: In vitro analysis of exoenzyme activity and antagonistic potential against plant pathogen from agricultural fields in the Patna region, India Exploring the therapeutic implications of nanoparticles for liquid tumors: A comprehensive review with special emphasis on green synthesis techniques in the context of Dalton’s lymphoma Nanoparticles as illuminating allies: Advancing diagnostic frontiers in COVID-19- A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1