Prediksi Angka Partisipasi Sekolah dengan Fungsi Pelatihan Gradient Descent With Momentum & Adaptive LR

Anjar Wanto
{"title":"Prediksi Angka Partisipasi Sekolah dengan Fungsi Pelatihan Gradient Descent With Momentum & Adaptive LR","authors":"Anjar Wanto","doi":"10.30829/ALGORITMA.V3I1.4431","DOIUrl":null,"url":null,"abstract":"School Participation Rate (APS) is known as one of the indicators of the success of the development of educational services in regions both Province, Regency or City in Indonesia. The higher the value of the School Participation Rate, then the area is considered successful in providing access to education services. The purpose of this study is to predict School Participation Rates based on Provinces in Indonesia from Aceh to Papua. The prediction algorithm used is the backpropagation algorithm using the gradient descent with momentum & adaptive LR (traingdx) training function. Traingdx is a network training function that updates weight values and biases based on gradient descent momentum and adaptive learning levels. Usually, the backpropagation algorithm uses the gradient descent backpropagation (traingd) function, but in this study, the training function used is using gradient descent with momentum & adaptive LR (traingdx). The data used in this study data on School Participation Figures for each province in Indonesia in 2011-2017 aged 19-24 years were taken from the Indonesian Central Bureau of Statistics (BPS). The reason for choosing this age range is because at this age is one of the factors that determine the success of education in a country, especially Indonesia. This study uses 3 network architecture models, namely: 5-5-1, 5-15-1 and 5-25-1. Of the 3 models, the best model is 5-5-1 with an iteration of 130, the accuracy of 94% and MSE 0,0008708473. This model is then used to predict School Participation Rates in each province in Indonesia over the next 3 years (2018-2020). These results are expected to help the Indonesian government to further increase scholarships and improve the quality of education in the future..                                                                                                 Keywords: Prediction, APS, Backpropagation, Traingdx.","PeriodicalId":373544,"journal":{"name":"ALGORITMA : JURNAL ILMU KOMPUTER DAN INFORMATIKA","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ALGORITMA : JURNAL ILMU KOMPUTER DAN INFORMATIKA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30829/ALGORITMA.V3I1.4431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

School Participation Rate (APS) is known as one of the indicators of the success of the development of educational services in regions both Province, Regency or City in Indonesia. The higher the value of the School Participation Rate, then the area is considered successful in providing access to education services. The purpose of this study is to predict School Participation Rates based on Provinces in Indonesia from Aceh to Papua. The prediction algorithm used is the backpropagation algorithm using the gradient descent with momentum & adaptive LR (traingdx) training function. Traingdx is a network training function that updates weight values and biases based on gradient descent momentum and adaptive learning levels. Usually, the backpropagation algorithm uses the gradient descent backpropagation (traingd) function, but in this study, the training function used is using gradient descent with momentum & adaptive LR (traingdx). The data used in this study data on School Participation Figures for each province in Indonesia in 2011-2017 aged 19-24 years were taken from the Indonesian Central Bureau of Statistics (BPS). The reason for choosing this age range is because at this age is one of the factors that determine the success of education in a country, especially Indonesia. This study uses 3 network architecture models, namely: 5-5-1, 5-15-1 and 5-25-1. Of the 3 models, the best model is 5-5-1 with an iteration of 130, the accuracy of 94% and MSE 0,0008708473. This model is then used to predict School Participation Rates in each province in Indonesia over the next 3 years (2018-2020). These results are expected to help the Indonesian government to further increase scholarships and improve the quality of education in the future..                                                                                                 Keywords: Prediction, APS, Backpropagation, Traingdx.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
入学率(APS)被认为是印度尼西亚省、县或市地区教育服务发展成功的指标之一。学校参与率值越高,则认为该地区在提供教育服务方面取得了成功。本研究的目的是预测印度尼西亚从亚齐到巴布亚各省的入学率。使用的预测算法是使用带动量梯度下降和自适应LR (trainingdx)训练函数的反向传播算法。trainingdx是一个基于梯度下降动量和自适应学习水平更新权重值和偏差的网络训练函数。通常,反向传播算法使用梯度下降反向传播(trainingd)函数,但在本研究中,使用的训练函数是使用带动量的梯度下降&自适应LR (trainingdx)。本研究中使用的数据来自印度尼西亚中央统计局(BPS),数据为2011-2017年印度尼西亚各省19-24岁学生的学校参与数据。选择这个年龄段的原因是因为这个年龄段是决定一个国家教育成功的因素之一,尤其是印度尼西亚。本研究使用了3种网络架构模型,分别是:5-5-1、5-15-1和5-25-1。3个模型中,最佳模型为5-5-1,迭代次数为130次,准确率为94%,MSE为0 0008708473。然后使用该模型预测未来三年(2018-2020年)印度尼西亚每个省的入学率。这些结果将帮助印尼政府进一步增加奖学金和提高教育质量 ..                                                                                                 关键词:预测,APS,反向传播,训练
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pengembangan Media Pembelajaran Berbasis Video Sparkol Dengan Menggunakan Media Internet Dalam Pembelajaran Matematika SMP Negeri 1 dan 2 Kecamatan Tanah Jawa Sistem Pendukung Keputusan Dalam Memilih Bibit Jambu Madu Terbaik Dengan Menggunakan Metode MOORA DAN SAW Perancangan Intelligent Tutoring System Sebagai Upaya Inovatif Pada Pembelajaran Algoritma dan Struktur Data Sistem Pendukung Keputusan Dalam Pemilihan Pergururan Tinggi Terbaik Dengan Menggunakan Metode SAW (Simple Additive Weighting) Perancangan Aplikasi Skripsi Online Menggunakan Algoritma String Matching Knuth Morris-Pratt Pada Fakultas Teknik Universitas Islam Sumatera Utara
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1