{"title":"NEGF based transport modelling with a full-band, pseudopotential Hamiltonian: Theory, implementation and full device simulations","authors":"M. Pala, O. Badami, D. Esseni","doi":"10.1109/IEDM.2017.8268498","DOIUrl":null,"url":null,"abstract":"This paper presents the theory, implementation and application of a new quantum transport, NEGF based modelling approach employing a full-band Empirical Pseudopotential (EP) Hamiltonian. The use of a hybrid real-space/plane-waves basis results in a remarkable reduction of the computational burden compared to a full plane waves basis, which allowed us to obtain complete, self-consistent simulations for both FETs and Tunnel FETs in Si or in Ge, and with geometrical features in line with forthcoming CMOS technologies.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2017.8268498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents the theory, implementation and application of a new quantum transport, NEGF based modelling approach employing a full-band Empirical Pseudopotential (EP) Hamiltonian. The use of a hybrid real-space/plane-waves basis results in a remarkable reduction of the computational burden compared to a full plane waves basis, which allowed us to obtain complete, self-consistent simulations for both FETs and Tunnel FETs in Si or in Ge, and with geometrical features in line with forthcoming CMOS technologies.