Urban Electric Load Forecasting with Mobile Phone Location Data

Stefan Selvarajoo, M. Schläpfer, Rui Tan
{"title":"Urban Electric Load Forecasting with Mobile Phone Location Data","authors":"Stefan Selvarajoo, M. Schläpfer, Rui Tan","doi":"10.1109/ACEPT.2018.8610757","DOIUrl":null,"url":null,"abstract":"In recent years, electrical load forecasting has received continuous research efforts aiming to improve the short-term prediction accuracy of local energy demands. However, current methods are not able to take explicitly into account the dynamic spatial population distribution over the course of a day, which is particularly relevant in dense urban areas. In this paper, we harness society-wide mobile phone data to map the time-varying population distribution in the Trentino region, Italy, and to use these insights for a novel electrical load forecasting method. Our results demonstrate that the integration of aggregated mobile phone data yields compelling forecast models.","PeriodicalId":296432,"journal":{"name":"2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACEPT.2018.8610757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In recent years, electrical load forecasting has received continuous research efforts aiming to improve the short-term prediction accuracy of local energy demands. However, current methods are not able to take explicitly into account the dynamic spatial population distribution over the course of a day, which is particularly relevant in dense urban areas. In this paper, we harness society-wide mobile phone data to map the time-varying population distribution in the Trentino region, Italy, and to use these insights for a novel electrical load forecasting method. Our results demonstrate that the integration of aggregated mobile phone data yields compelling forecast models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于手机位置数据的城市电力负荷预测
近年来,电力负荷预测得到了不断的研究,旨在提高当地能源需求的短期预测精度。然而,目前的方法不能明确考虑到一天中的动态空间人口分布,这在密集的城市地区尤为重要。在本文中,我们利用全社会的移动电话数据来绘制意大利特伦蒂诺地区随时间变化的人口分布,并将这些见解用于一种新的电力负荷预测方法。我们的研究结果表明,整合汇总的移动电话数据产生令人信服的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization and Evaluation of 3.3 kV 5 A SiC MOSFET for Solid-State Transformer Applications Advanced Traction Power Supply System Based on Modular Multilevel Converters A Study on High Frequency Transformer Design in Medium-voltage Solid-state Transformers Study of Bend to Twist Coupling of Composite Laminates for Passive Load Alleviation of a Wind Turbine Blade Renewable Powered Desalination System for Remote Islands in Singapore
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1