Acquisition of fuzzy knowledge from topographic mixture networks with attentional feedback

Isao Ha Yashi, J. Williamson
{"title":"Acquisition of fuzzy knowledge from topographic mixture networks with attentional feedback","authors":"Isao Ha Yashi, J. Williamson","doi":"10.1109/IJCNN.2001.939564","DOIUrl":null,"url":null,"abstract":"The topographic attentive mapping network based on a biologically-motivated neural network model is an especially effective model. When the network makes an incorrect output prediction, the attentional feedback circuit modulates the learning rates and adds a node to the category layer in order to improve the network's prediction accuracy. In this paper, a pruning method for reducing the number of category and feature nodes is formulated. We discuss the formulation and show its usefulness through some examples.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.939564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The topographic attentive mapping network based on a biologically-motivated neural network model is an especially effective model. When the network makes an incorrect output prediction, the attentional feedback circuit modulates the learning rates and adds a node to the category layer in order to improve the network's prediction accuracy. In this paper, a pruning method for reducing the number of category and feature nodes is formulated. We discuss the formulation and show its usefulness through some examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于注意反馈的地形混合网络模糊知识获取
基于生物驱动神经网络模型的地形关注映射网络是一种特别有效的模型。当网络做出错误的输出预测时,注意反馈电路调节学习率,并在类别层增加一个节点,以提高网络的预测精度。本文提出了一种减少类别节点和特征节点数量的剪枝方法。我们讨论了这个公式,并通过一些例子说明了它的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1