Numerical Simulation of Thermal Discharge with Different Heat Exchange Methods on Water Surface

Zhang Beibei, J. Ping, L. Zhiping, Z. Jing
{"title":"Numerical Simulation of Thermal Discharge with Different Heat Exchange Methods on Water Surface","authors":"Zhang Beibei, J. Ping, L. Zhiping, Z. Jing","doi":"10.1109/ICICTA.2015.152","DOIUrl":null,"url":null,"abstract":"The calculation of heat exchange on water surface plays an important role in thermal discharge simulation. A laboratory thermal discharge flume experiment under specified artificial meteorological conditions was conducted to investigate the thermal impact process in receiving water, which was also modeled using both the Hydrodynamic Module and ECO Lab Module of MIKE3 Flow Model FM 2009 (MIKE3FM), respectively. The results indicate that the amount of heat exchange on water surface calculated by real time heat flux method and comprehensive heat transfer coefficient method is quite different. The heat flux method can reflect the heat accumulation process of environment water under the real-time meteorological conditions, while the comprehensive heat transfer coefficient doesn't embody the real physical process of heat exchange, and it is generally applied to the power plant siting and planning stage under design conditions.","PeriodicalId":231694,"journal":{"name":"2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICTA.2015.152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The calculation of heat exchange on water surface plays an important role in thermal discharge simulation. A laboratory thermal discharge flume experiment under specified artificial meteorological conditions was conducted to investigate the thermal impact process in receiving water, which was also modeled using both the Hydrodynamic Module and ECO Lab Module of MIKE3 Flow Model FM 2009 (MIKE3FM), respectively. The results indicate that the amount of heat exchange on water surface calculated by real time heat flux method and comprehensive heat transfer coefficient method is quite different. The heat flux method can reflect the heat accumulation process of environment water under the real-time meteorological conditions, while the comprehensive heat transfer coefficient doesn't embody the real physical process of heat exchange, and it is generally applied to the power plant siting and planning stage under design conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同换热方式下水面热排放的数值模拟
水面换热计算在热排放模拟中起着重要的作用。利用MIKE3 Flow Model fm2009 (MIKE3FM)的hydrodynamics模块和ECO Lab模块分别对接收水的热冲击过程进行了模拟,研究了指定人工气象条件下的室内热排放水槽实验。结果表明,实时热流密度法与综合换热系数法计算的水面换热量存在较大差异。热流密度法能反映实时气象条件下环境水的蓄热过程,而综合换热系数不能体现真实的物理换热过程,一般应用于设计条件下的电厂选址规划阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Cloud-Based Integrated Management System for Rural Information Service Station: Architecture and Implementation A New Dynamic Authentication Captcha Based on Negotiation Between Host and Mobile Terminal for Electronic Commerce Automatical Optimal Threshold Searching Algorithm Based on Bhattacharyya Distance and Support Vector Machine Hardware Design of Fall Detection System Based on ADXL345 Sensor Non-circular Gear Modal Analysis Based on ABAQUS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1