FPGA-based generation of autowaves in Memristive Cellular Neural Networks

V. Pham, A. Buscarino, M. Frasca, L. Fortuna, T. Hoang
{"title":"FPGA-based generation of autowaves in Memristive Cellular Neural Networks","authors":"V. Pham, A. Buscarino, M. Frasca, L. Fortuna, T. Hoang","doi":"10.1109/CNNA.2012.6331435","DOIUrl":null,"url":null,"abstract":"Cellular Neural/Nonlinear Networks (CNNs) constitute an effective approach for studying complex phenomena like autowaves, spiral waves or pattern formation either by providing a computationally efficient environment for numerical simulations or by allowing the possibility of hardware emulators of the system under study. In this work, we focus on a CNN made of memristor-based cells, namely a Memristive Cellular Neural/Nonlinear Network (MCNN). This has been recently shown to be capable of generating complex phenomena such as autowave propagation. In this work, we implement such a MCNN by using Field Programmable Gate Array (FPGA). Our system consisting of a FPGA development board connected to a monitor allows us to emulate autowave propagation in an efficient way. Experimental results show the feasibility of FPGA-based approach to implement MCNN.","PeriodicalId":387536,"journal":{"name":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2012.6331435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cellular Neural/Nonlinear Networks (CNNs) constitute an effective approach for studying complex phenomena like autowaves, spiral waves or pattern formation either by providing a computationally efficient environment for numerical simulations or by allowing the possibility of hardware emulators of the system under study. In this work, we focus on a CNN made of memristor-based cells, namely a Memristive Cellular Neural/Nonlinear Network (MCNN). This has been recently shown to be capable of generating complex phenomena such as autowave propagation. In this work, we implement such a MCNN by using Field Programmable Gate Array (FPGA). Our system consisting of a FPGA development board connected to a monitor allows us to emulate autowave propagation in an efficient way. Experimental results show the feasibility of FPGA-based approach to implement MCNN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
记忆细胞神经网络中基于fpga的自动波生成
细胞神经/非线性网络(cnn)是研究自动波、螺旋波或模式形成等复杂现象的有效方法,它为数值模拟提供了高效的计算环境,并允许所研究系统的硬件模拟器的可能性。在这项工作中,我们专注于由基于忆阻器的细胞组成的CNN,即忆阻细胞神经/非线性网络(MCNN)。这最近已被证明能够产生复杂的现象,如自动波传播。在这项工作中,我们使用现场可编程门阵列(FPGA)实现了这样一个MCNN。我们的系统由连接到监视器的FPGA开发板组成,使我们能够以有效的方式模拟自动波传播。实验结果表明,基于fpga实现MCNN的方法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchronization in cellular spin torque oscillator arrays CNN based dark signal non-uniformity estimation Advanced background elimination in digital holographic microscopy Boolean and non-boolean nearest neighbor architectures for out-of-plane nanomagnet logic 2nd order 2-D spatial filters and Cellular Neural Network implementations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1