Robust Sensor Fault Detection for Linear Parameter-Varying Systems using Interval Observer

T. Chevet, T. N. Dinh, J. Marzat, T. Raïssi
{"title":"Robust Sensor Fault Detection for Linear Parameter-Varying Systems using Interval Observer","authors":"T. Chevet, T. N. Dinh, J. Marzat, T. Raïssi","doi":"10.3850/978-981-18-2016-8_380-cd","DOIUrl":null,"url":null,"abstract":"This paper proposes a new interval observer for continuous-time linear parameter-varying systems with an unmeasurable parameter vector subject to unknown but bounded disturbances. The parameter-varying matrices are assumed to be elementwise bounded. This observer is used to compute a so-called residual interval used for sensor fault detection by checking if zero is contained in the interval. To attenuate the effect of the system's uncertainties on the detectability of faults, additional weighting matrices and different upper and lower observer gains are introduced, providing more degrees of freedom than the classical interval observer strategies. In addition, a $L_{\\infty}$ procedure is proposed to tune the value of the observer gains, this procedure being easy to modify to introduce additional constraints on the estimation algorithm. Simulations are run to show the efficiency of the proposed fault detection strategy.","PeriodicalId":187633,"journal":{"name":"Proceedings of the 31st European Safety and Reliability Conference (ESREL 2021)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st European Safety and Reliability Conference (ESREL 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3850/978-981-18-2016-8_380-cd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a new interval observer for continuous-time linear parameter-varying systems with an unmeasurable parameter vector subject to unknown but bounded disturbances. The parameter-varying matrices are assumed to be elementwise bounded. This observer is used to compute a so-called residual interval used for sensor fault detection by checking if zero is contained in the interval. To attenuate the effect of the system's uncertainties on the detectability of faults, additional weighting matrices and different upper and lower observer gains are introduced, providing more degrees of freedom than the classical interval observer strategies. In addition, a $L_{\infty}$ procedure is proposed to tune the value of the observer gains, this procedure being easy to modify to introduce additional constraints on the estimation algorithm. Simulations are run to show the efficiency of the proposed fault detection strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于区间观测器的线性变参数系统鲁棒传感器故障检测
针对具有不可测参数向量且受未知有界扰动的连续时间线性变参数系统,提出了一种新的区间观测器。假设参数变化矩阵是元素有界的。该观测器用于计算所谓的残差区间,通过检查区间中是否包含零来用于传感器故障检测。为了减弱系统不确定性对故障可检测性的影响,引入了附加加权矩阵和不同的上下观测器增益,提供了比经典区间观测器策略更大的自由度。此外,还提出了一个$L_{\infty}$过程来调整观测器增益的值,该过程易于修改以在估计算法中引入额外的约束。仿真结果表明了所提故障检测策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Use Prescriptive Maintenance to Construct Robust Master Production Schedules Robust Sensor Fault Detection for Linear Parameter-Varying Systems using Interval Observer Knowledge-Based Approach for System Level Electromagnetic Safety Analysis A State-of-the-Art Review on IC EMC Reliability Empirical Analysis of Ship Anchor Drag Incidents for Cable Burial Risk Assessments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1