T. Vermeulen, M. Laghate, Ghaith Hattab, B. V. Liempd, D. Cabric, S. Pollin
{"title":"Nearly instantaneous collision and interference detection using in-band full duplex","authors":"T. Vermeulen, M. Laghate, Ghaith Hattab, B. V. Liempd, D. Cabric, S. Pollin","doi":"10.1109/DySPAN.2017.7920762","DOIUrl":null,"url":null,"abstract":"In wireless communication it is assumed that transmitting nodes are unable to detect collisions. However, using recent advances in in-band full duplex, a system can be developed where the self-transmitted signal is sufficiently canceled in order to detect ongoing collisions. Enabling concurrent transmission and collision detection can greatly improve wireless communication by enhancing throughput and decreasing delay and energy consumption. For this demo, we implemented a real-time collision and interference detection algorithm on the FPGA of a USRP. Inband full duplex is enabled using an electrical balance duplexer. A second USRP is used to generate interfering signals on demand.","PeriodicalId":221877,"journal":{"name":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DySPAN.2017.7920762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In wireless communication it is assumed that transmitting nodes are unable to detect collisions. However, using recent advances in in-band full duplex, a system can be developed where the self-transmitted signal is sufficiently canceled in order to detect ongoing collisions. Enabling concurrent transmission and collision detection can greatly improve wireless communication by enhancing throughput and decreasing delay and energy consumption. For this demo, we implemented a real-time collision and interference detection algorithm on the FPGA of a USRP. Inband full duplex is enabled using an electrical balance duplexer. A second USRP is used to generate interfering signals on demand.