Effective Connectivity in the Primary Somatosensory Network using Combined EEG and MEG

K. Politof, M. Antonakakis, A. Wollbrink, M. Zervakis, C. Wolters
{"title":"Effective Connectivity in the Primary Somatosensory Network using Combined EEG and MEG","authors":"K. Politof, M. Antonakakis, A. Wollbrink, M. Zervakis, C. Wolters","doi":"10.1109/BIBE.2019.00113","DOIUrl":null,"url":null,"abstract":"The primary somatosensory cortex remains one of the most investigated brain areas. However, there is still an absence of an integrated methodology to describe the early temporal alterations in the primary somatosensory network. Source analysis based on combined Electro-(EEG) and Magneto-(MEG) Encephalography (EMEG) has been recently shown to outperform the one's based on single modality EEG or MEG. The study and potential of combined EMEG form the goal of the current study, which investigates the time-variant connectivity of the primary somatosensory network. A subject-individualized pipeline combines a functional source separation approach with the effective connectivity analysis of different spatiotemporal source patterns using a realistic and skull-conductivity calibrated head model. Three-time windows are chosen for each modality EEG, MEG, and EMEG to highlight the thalamocortical and corticocortical interactions. The results show that EMEG is promising in suppressing a so-called connectivity 'leakage' effect when later components seem to influence earlier components, just due to too similar leadfields. Our current results support the notion that EMEG is superior in suppressing the spurious flows within a network of very rapid alterations.","PeriodicalId":318819,"journal":{"name":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2019.00113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The primary somatosensory cortex remains one of the most investigated brain areas. However, there is still an absence of an integrated methodology to describe the early temporal alterations in the primary somatosensory network. Source analysis based on combined Electro-(EEG) and Magneto-(MEG) Encephalography (EMEG) has been recently shown to outperform the one's based on single modality EEG or MEG. The study and potential of combined EMEG form the goal of the current study, which investigates the time-variant connectivity of the primary somatosensory network. A subject-individualized pipeline combines a functional source separation approach with the effective connectivity analysis of different spatiotemporal source patterns using a realistic and skull-conductivity calibrated head model. Three-time windows are chosen for each modality EEG, MEG, and EMEG to highlight the thalamocortical and corticocortical interactions. The results show that EMEG is promising in suppressing a so-called connectivity 'leakage' effect when later components seem to influence earlier components, just due to too similar leadfields. Our current results support the notion that EMEG is superior in suppressing the spurious flows within a network of very rapid alterations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑电与脑磁图联合研究初级躯体感觉网络的有效连接
初级体感觉皮层仍然是研究最多的大脑区域之一。然而,目前仍然缺乏一种综合的方法来描述初级体感网络的早期时间变化。近年来,基于脑电和脑磁图联合的源分析已被证明优于基于单模脑电图或脑磁图的源分析。联合肌电图的研究和潜力构成了本研究的目标,该研究旨在研究初级体感网络的时变连接。受试者个性化管道结合了功能源分离方法和使用现实的颅骨电导率校准的头部模型对不同时空源模式进行有效的连通性分析。每种模式的EEG、MEG和EMEG都选择了三个时间窗口,以突出丘脑皮质和皮质-皮质的相互作用。结果表明,EMEG在抑制所谓的连接“泄漏”效应方面很有希望,当后期组件似乎影响了早期组件时,只是由于过于相似的引线场。我们目前的结果支持这样一种观点,即EMEG在抑制非常快速变化的网络中的伪流方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability Investigation Using Hydrogen Bonds for Different Mutations and Drug Resistance in Non-Small Cell Lung Cancer Patients A Temporal Convolution Network Solution for EEG Motor Imagery Classification Evaluation of a Serious Game Promoting Nutrition and Food Literacy: Experiment Design and Preliminary Results Towards a Robust and Accurate Screening Tool for Dyslexia with Data Augmentation using GANs Exploring Fibrotic Disease Networks to Identify Common Molecular Mechanisms with IPF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1