{"title":"Convergence of the symmetrical FastICA algorithm","authors":"E. Oja","doi":"10.1109/ICONIP.2002.1202844","DOIUrl":null,"url":null,"abstract":"The FastICA algorithm is one of the most popular methods to solve problems in independent component analysis (ICA) and blind source separation. It has been shown experimentally that it outperforms most of the commonly used ICA algorithms in convergence speed. A rigorous convergence analysis has been presented only for the so-called one-unit case, in which just one of the rows of the separating matrix is considered. However, in the FastICA algorithm, there is also an explicit normalization step, and it may be questioned whether the extra rotation caused by the normalization will effect the convergence speed. The purpose of this paper is to show that this is not the case and the good convergence properties of the one-unit case are also shared by the full algorithm with symmetrical normalization.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1202844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

The FastICA algorithm is one of the most popular methods to solve problems in independent component analysis (ICA) and blind source separation. It has been shown experimentally that it outperforms most of the commonly used ICA algorithms in convergence speed. A rigorous convergence analysis has been presented only for the so-called one-unit case, in which just one of the rows of the separating matrix is considered. However, in the FastICA algorithm, there is also an explicit normalization step, and it may be questioned whether the extra rotation caused by the normalization will effect the convergence speed. The purpose of this paper is to show that this is not the case and the good convergence properties of the one-unit case are also shared by the full algorithm with symmetrical normalization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对称FastICA算法的收敛性
FastICA算法是解决独立分量分析(ICA)和盲源分离问题最常用的方法之一。实验表明,它在收敛速度上优于大多数常用的ICA算法。一个严格的收敛分析已经提出了所谓的单单元情况下,其中只考虑分离矩阵的一行。然而,在FastICA算法中,也有一个明确的归一化步骤,可能会有人质疑归一化带来的额外旋转是否会影响收敛速度。本文的目的是证明这种情况并非如此,并且对称归一化的完整算法也具有单单元情况下良好的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware neuron models with CMOS for auditory neural networks Extracting latent structures in numerical classification: an investigation using two factor models An application of a progressive neural network technique in the identification of suspension properties of tracked vehicles Discussions of neural network solvers for inverse optimization problems Link between energy and computation in a physical model of Hopfield network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1