Power system static security assessment using the Kohonen neural network classifier

D. Niebur, A. Germond
{"title":"Power system static security assessment using the Kohonen neural network classifier","authors":"D. Niebur, A. Germond","doi":"10.1109/PICA.1991.160588","DOIUrl":null,"url":null,"abstract":"The operating point of a power system can be defined as a vector whose components are active and reactive power measurements. If the security criterion is prevention of line overloads, the boundaries of the secure domain of the state space are given by the maximal admissible currents of the transmission lines. The application of an artificial neural network, Kohonen's self-organizing feature map, for the classification of power system states is presented. This classifier maps vectors of an N-dimensional space to a 2-dimensional neural net in a nonlinear way, preserving the topological order of the input vectors. Therefore, secure operating points, that is, vectors inside the boundaries of the secure domain, are mapped to a different region of the neural map than insecure operating points. These mappings are studied using a nonlinear power system model. Choice of security criteria and state space are discussed.<<ETX>>","PeriodicalId":287152,"journal":{"name":"[Proceedings] Conference Papers 1991 Power Industry Computer Application Conference","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Conference Papers 1991 Power Industry Computer Application Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICA.1991.160588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129

Abstract

The operating point of a power system can be defined as a vector whose components are active and reactive power measurements. If the security criterion is prevention of line overloads, the boundaries of the secure domain of the state space are given by the maximal admissible currents of the transmission lines. The application of an artificial neural network, Kohonen's self-organizing feature map, for the classification of power system states is presented. This classifier maps vectors of an N-dimensional space to a 2-dimensional neural net in a nonlinear way, preserving the topological order of the input vectors. Therefore, secure operating points, that is, vectors inside the boundaries of the secure domain, are mapped to a different region of the neural map than insecure operating points. These mappings are studied using a nonlinear power system model. Choice of security criteria and state space are discussed.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Kohonen神经网络分类器的电力系统静态安全评估
电力系统的工作点可以定义为一个矢量,它的分量是有功功率和无功功率的测量值。如果以防止线路过载为安全准则,则状态空间安全域的边界由输电线路的最大允许电流给出。介绍了人工神经网络Kohonen自组织特征映射在电力系统状态分类中的应用。该分类器以非线性方式将n维空间的向量映射到2维神经网络,同时保持输入向量的拓扑顺序。因此,安全工作点,即在安全域边界内的向量,被映射到与不安全工作点不同的神经图区域。利用非线性电力系统模型对这些映射进行了研究。讨论了安全准则和状态空间的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive scheme for digital protection of power transformers Handling discardable measurements in power system state estimation The uses of an operator training simulator for system restoration Monitoring for geomagnetic induced current flow effects using existing EMS telemetering Real-time data exchange for on-line security assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1