{"title":"Study of specific absorption rate (SAR) induced in human endocrine glands for using mobile phones","authors":"Mai Lu, Xiao-Yan Wu","doi":"10.1109/APEMC.2016.7522951","DOIUrl":null,"url":null,"abstract":"With the quick development and widespread use of mobile phones has led to arising concern about the possible adverse health effects of radio frequency electromagnetic field exposure. This study aims to present the dosimetry analysis of the electromagnetic fields induced by mobile phone on human endocrine glands. A finite-difference time-domain (FDTD) method was employed to calculate the specific absorption rate (SAR) in a realistic human head-neck model from exposure to a generic handset at 1750 MHz. The results show that the locally induced SAR in thyroid gland is much larger than that in both hypophysis and hypothalamus glands. The induced SAR in thyroid for the mobile in short message service (SMS) position is much larger than that in the voice position. However, in all of the examined cases, the SAR values in endocrine glands are all below the IEEE safety standard.","PeriodicalId":358257,"journal":{"name":"2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEMC.2016.7522951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
With the quick development and widespread use of mobile phones has led to arising concern about the possible adverse health effects of radio frequency electromagnetic field exposure. This study aims to present the dosimetry analysis of the electromagnetic fields induced by mobile phone on human endocrine glands. A finite-difference time-domain (FDTD) method was employed to calculate the specific absorption rate (SAR) in a realistic human head-neck model from exposure to a generic handset at 1750 MHz. The results show that the locally induced SAR in thyroid gland is much larger than that in both hypophysis and hypothalamus glands. The induced SAR in thyroid for the mobile in short message service (SMS) position is much larger than that in the voice position. However, in all of the examined cases, the SAR values in endocrine glands are all below the IEEE safety standard.