Adaptive dynamic output feedback control of Takagi-Sugeno fuzzy systems with immeasurable premise variables and disturbance

Balaje T. Thumati, A. Salour
{"title":"Adaptive dynamic output feedback control of Takagi-Sugeno fuzzy systems with immeasurable premise variables and disturbance","authors":"Balaje T. Thumati, A. Salour","doi":"10.1109/CICA.2014.7013231","DOIUrl":null,"url":null,"abstract":"Unlike in the literature, premise variables of the Takagi-Sugeno (TS) fuzzy system is assumed to be not measurable, and an adaptive output feedback control law is designed for the given system. Additionally, the system under investigation is considered to be subjected with both parameteric uncertainty and disturbance. Unlike other control designs, the bound on parameter uncertainty term is relaxed. Further, the adaptive control law utilizes estimated premise variables and online approximator. Note only one approximator is used to estimate both the parameter uncertainty and disturbance. Therefore, the proposed control design is simplified. This control design is guaranteed to render a stable closed loop TS fuzzy system. Detailed analytical results using Lyapunov theory are presented to guarantee stability. Finally, a simulation example is used to illustrate the performance of the proposed adaptive output feedback control law.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unlike in the literature, premise variables of the Takagi-Sugeno (TS) fuzzy system is assumed to be not measurable, and an adaptive output feedback control law is designed for the given system. Additionally, the system under investigation is considered to be subjected with both parameteric uncertainty and disturbance. Unlike other control designs, the bound on parameter uncertainty term is relaxed. Further, the adaptive control law utilizes estimated premise variables and online approximator. Note only one approximator is used to estimate both the parameter uncertainty and disturbance. Therefore, the proposed control design is simplified. This control design is guaranteed to render a stable closed loop TS fuzzy system. Detailed analytical results using Lyapunov theory are presented to guarantee stability. Finally, a simulation example is used to illustrate the performance of the proposed adaptive output feedback control law.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有不可测前提变量和干扰的Takagi-Sugeno模糊系统的自适应动态输出反馈控制
与文献不同的是,假定Takagi-Sugeno (TS)模糊系统的前提变量不可测,并针对给定系统设计自适应输出反馈控制律。此外,所研究的系统被认为同时受到参数不确定性和干扰。与其他控制设计不同的是,该控制方案的参数不确定项的界是宽松的。此外,自适应控制律利用预估的前提变量和在线逼近器。注意,只使用一个逼近器来估计参数不确定性和干扰。因此,所提出的控制设计是简化的。这种控制设计保证了TS模糊系统的闭环稳定。利用李亚普诺夫理论给出了详细的分析结果,以保证稳定性。最后,通过仿真实例验证了所提出的自适应输出反馈控制律的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One-class LS-SVM with zero leave-one-out error Enumeration of reachable, forbidden, live states of gen-left k-net system (with a non-sharing resource place) of Petri Nets Context-based adaptive robot behavior learning model (CARB-LM) New multiagent coordination optimization algorithms for mixed-binary nonlinear programming with control applications Ultra high frequency polynomial and sine artificial higher order neural networks for control signal generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1