Robust Head Tracking Based on a Multi-State Particle Filter

Yuan Li, H. Ai, Chang Huang, S. Lao
{"title":"Robust Head Tracking Based on a Multi-State Particle Filter","authors":"Yuan Li, H. Ai, Chang Huang, S. Lao","doi":"10.1109/FGR.2006.96","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method for robust and automatic realtime head tracking by fusing face and head cues within a multi-state particle filter. Due to large appearance variability of human head, most existing head tracking methods use little object-specific prior knowledge, resulting in limited discriminant power. In contrast, face is a distinct pattern much easier to capture, which motivates us to incorporate a vector-boosted multi-view face detector (C. Huang, et al., 2005) to lend strong aid to general head observation cues including color and contour edge. To simultaneously and collaboratively perform temporal inference of both the face state and the head state, a Markov-network-based particle filter is constructed using sequential belief propagation Monte Carlo (G. Hua, et al., 2004). Our approach is tested on sequences used by previous researchers as well as on new data sets which includes many challenging real-world cases, and shows robustness against various unfavorable conditions","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This paper proposes a novel method for robust and automatic realtime head tracking by fusing face and head cues within a multi-state particle filter. Due to large appearance variability of human head, most existing head tracking methods use little object-specific prior knowledge, resulting in limited discriminant power. In contrast, face is a distinct pattern much easier to capture, which motivates us to incorporate a vector-boosted multi-view face detector (C. Huang, et al., 2005) to lend strong aid to general head observation cues including color and contour edge. To simultaneously and collaboratively perform temporal inference of both the face state and the head state, a Markov-network-based particle filter is constructed using sequential belief propagation Monte Carlo (G. Hua, et al., 2004). Our approach is tested on sequences used by previous researchers as well as on new data sets which includes many challenging real-world cases, and shows robustness against various unfavorable conditions
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多态粒子滤波器的稳健头部跟踪
本文提出了一种新方法,通过在多态粒子滤波器中融合面部和头部线索,实现稳健、自动的实时头部跟踪。由于人类头部的外观变化很大,大多数现有的头部跟踪方法几乎不使用特定对象的先验知识,导致判别能力有限。与此相反,面部是一种独特的模式,更容易捕捉,这促使我们将矢量增强型多视角面部检测器(C. Huang 等人,2005 年)与包括颜色和轮廓边缘在内的一般头部观察线索结合起来。为了同时协同执行脸部状态和头部状态的时间推断,我们使用序列信念传播蒙特卡洛(G. Hua 等人,2004 年)构建了基于马尔可夫网络的粒子过滤器。我们的方法在以往研究人员使用的序列和新数据集(其中包括许多具有挑战性的真实世界案例)上进行了测试,并显示出对各种不利条件的鲁棒性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking using dynamic programming for appearance-based sign language recognition Multi-view face recognition by nonlinear dimensionality reduction and generalized linear models Face recognition by projection-based 3D normalization and shading subspace orthogonalization Hierarchical ensemble of Gabor Fisher classifier for face recognition Reliable and fast tracking of faces under varying pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1