Indexing recent trajectories of moving objects

Ahmed R. Mahmood, Walid G. Aref, Ahmed M. Aly, Saleh M. Basalamah
{"title":"Indexing recent trajectories of moving objects","authors":"Ahmed R. Mahmood, Walid G. Aref, Ahmed M. Aly, Saleh M. Basalamah","doi":"10.1145/2666310.2666427","DOIUrl":null,"url":null,"abstract":"The plethora of lacation-aware devices has led to countless location-based services in which huge amounts of spatio-temporal data get created everyday. Several applications requie efficient processing of queries on the locations of moving objects over time, i.e., the moving object trajectories. This calls for efficient trajectory-based indexing methods that capture both the spatial and temporal dimensions of the data in a way that minimizes the number of disk I/Os required for both updating and querying. Motivated by applications that require only the recent history of a moving object's trajectory, this paper introduces the trails-tree; a disk-based data structure for indexing recent trajectories. The trails-tree maintains a temporal-sliding window over the trajectories and uses: (1) an in-memory memo structure that reduces the I/O cost of updates using a lazy-update mechanism, and (2) a lazy vacuum-cleaning mechanism to delete parts of the trajectories that fall out of the sliding window. Experimental evaluation illustrates that the trails-tree outperforms the state-of-the-art index structures for indexing recent trajectory data by up to a factor of two.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The plethora of lacation-aware devices has led to countless location-based services in which huge amounts of spatio-temporal data get created everyday. Several applications requie efficient processing of queries on the locations of moving objects over time, i.e., the moving object trajectories. This calls for efficient trajectory-based indexing methods that capture both the spatial and temporal dimensions of the data in a way that minimizes the number of disk I/Os required for both updating and querying. Motivated by applications that require only the recent history of a moving object's trajectory, this paper introduces the trails-tree; a disk-based data structure for indexing recent trajectories. The trails-tree maintains a temporal-sliding window over the trajectories and uses: (1) an in-memory memo structure that reduces the I/O cost of updates using a lazy-update mechanism, and (2) a lazy vacuum-cleaning mechanism to delete parts of the trajectories that fall out of the sliding window. Experimental evaluation illustrates that the trails-tree outperforms the state-of-the-art index structures for indexing recent trajectory data by up to a factor of two.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
索引最近移动物体的轨迹
位置感知设备的过剩导致了无数基于位置的服务,每天都会产生大量的时空数据。一些应用程序需要有效地处理移动对象随时间的位置查询,即移动对象的轨迹。这就需要高效的基于轨迹的索引方法,这种方法可以捕获数据的空间和时间维度,从而最大限度地减少更新和查询所需的磁盘I/ o数量。由于应用程序只需要运动物体最近的轨迹历史,本文引入了轨迹树;索引最近轨迹的基于磁盘的数据结构。轨迹树在轨迹上维护一个临时滑动窗口,并使用:(1)使用延迟更新机制减少更新的I/O成本的内存备忘录结构,以及(2)惰性真空清理机制删除从滑动窗口中掉落的轨迹部分。实验评估表明,轨迹树在索引最近轨迹数据方面优于最先进的索引结构,最高可达两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A parallel query engine for interactive spatiotemporal analysis Spatio-temporal trajectory simplification for inferring travel paths Parameterized spatial query processing based on social probabilistic clustering Accurate and efficient map matching for challenging environments Top-k point of interest retrieval using standard indexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1