{"title":"Comparison of TSV-based PDN-design effects using various stacking topology methods","authors":"G. Charles, P. Franzon","doi":"10.1109/EPEPS.2012.6457848","DOIUrl":null,"url":null,"abstract":"In this study, we estimate, compare and analyze the PDN effects of four chip-stacking topologies. The chip-stacking topologies are: (1) F2B; (2) F2F; (3) B2F; and (4) B2B. The arrangement of various on-chip interconnect elements based on the chip-stacking topologies specific to the design of 3D IC-PDN, varies in impedance properties. To reduce the impedance effects NMOS decap unit cells are integrated into PDN system to suppress 3D-SSN. Conclusively, the results of the case study indicate B2F and F2B die stacking topologies results in lower impedance effects relative to F2F topology.","PeriodicalId":188377,"journal":{"name":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2012.6457848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this study, we estimate, compare and analyze the PDN effects of four chip-stacking topologies. The chip-stacking topologies are: (1) F2B; (2) F2F; (3) B2F; and (4) B2B. The arrangement of various on-chip interconnect elements based on the chip-stacking topologies specific to the design of 3D IC-PDN, varies in impedance properties. To reduce the impedance effects NMOS decap unit cells are integrated into PDN system to suppress 3D-SSN. Conclusively, the results of the case study indicate B2F and F2B die stacking topologies results in lower impedance effects relative to F2F topology.