{"title":"Energy Storage Frequency Regulation Energy Management Strategy Based on K-Means Analysis","authors":"Chen Hao, Jia Yanbing, Zheng Jin, Zhu Yanfang, Luo Gang, Xie Dong","doi":"10.1109/ICGEA.2019.8880782","DOIUrl":null,"url":null,"abstract":"The energy storage system participates in the power grid Frequency Regulation (FR), which can give full play to the advantages of fast energy storage return speed and high adjustment precision. Based on the optimal response FR scheduling instruction of energy storage power station, based on K-means clustering method, the comprehensive performance index of FR (adjustment speed, response time and adjustment precision) is analyzed. The different energy flow states of power grid and energy storage unit are summarized. The impact of performance indicators, explored the battery cell control strategy to achieve a network-storage win-win energy storage. By modifying the existing response sequence and combining the SOC state of each unit, the dynamic adaptive sensing adapts to the grid automatic power generation control (AGC) variable load task, so that the fire storage combined FR system can obtain more compensation and reduce storage. The total number of foldbacks can be reduced to reduce operating costs.","PeriodicalId":170713,"journal":{"name":"2019 IEEE 3rd International Conference on Green Energy and Applications (ICGEA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 3rd International Conference on Green Energy and Applications (ICGEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGEA.2019.8880782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The energy storage system participates in the power grid Frequency Regulation (FR), which can give full play to the advantages of fast energy storage return speed and high adjustment precision. Based on the optimal response FR scheduling instruction of energy storage power station, based on K-means clustering method, the comprehensive performance index of FR (adjustment speed, response time and adjustment precision) is analyzed. The different energy flow states of power grid and energy storage unit are summarized. The impact of performance indicators, explored the battery cell control strategy to achieve a network-storage win-win energy storage. By modifying the existing response sequence and combining the SOC state of each unit, the dynamic adaptive sensing adapts to the grid automatic power generation control (AGC) variable load task, so that the fire storage combined FR system can obtain more compensation and reduce storage. The total number of foldbacks can be reduced to reduce operating costs.