Guo-Ning Wang, Kaviya Aranganadin, Y. Lan, H. Hsu, J. Verboncoeur, Ming-Chieh Lin
{"title":"Space Charge and Resistance Effects on Saturation of Field Emission","authors":"Guo-Ning Wang, Kaviya Aranganadin, Y. Lan, H. Hsu, J. Verboncoeur, Ming-Chieh Lin","doi":"10.1109/IVNC57695.2023.10188956","DOIUrl":null,"url":null,"abstract":"Saturation of field emission under a strong applied electric field has been observed experimentally and studied theoretically for decades. Basically, the saturation can be attributed to a substrate effect characterized by a resistance or a space charge effect featured with a reduced surface electric field. In this work, a self-consistent model based on the particle-in-cell method coupled with a circuit modeling is employed to study the saturation of field emission due to these two effects in order to understand the electrical properties influenced and different characteristics caused.","PeriodicalId":346266,"journal":{"name":"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVNC57695.2023.10188956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Saturation of field emission under a strong applied electric field has been observed experimentally and studied theoretically for decades. Basically, the saturation can be attributed to a substrate effect characterized by a resistance or a space charge effect featured with a reduced surface electric field. In this work, a self-consistent model based on the particle-in-cell method coupled with a circuit modeling is employed to study the saturation of field emission due to these two effects in order to understand the electrical properties influenced and different characteristics caused.