A Novel Human Atrial Electromechanical Cardiomyocyte Model with Mechano-Calcium Feedback Effect

"Fazeelat Mazhar, Francesco Regazzoni, C. Bartolucci, C. Corsi, L. Dede’, A. Quarteroni, S. Severi
{"title":"A Novel Human Atrial Electromechanical Cardiomyocyte Model with Mechano-Calcium Feedback Effect","authors":"\"Fazeelat Mazhar, Francesco Regazzoni, C. Bartolucci, C. Corsi, L. Dede’, A. Quarteroni, S. Severi","doi":"10.22489/CinC.2022.195","DOIUrl":null,"url":null,"abstract":"Electromechanical coupling is crucial for modeling a realistic representation of $Ca^{+2}$ transient and $Ca^{+2}$ cycling. Cellular $Ca^{+2}$ dynamics in atria differ fundamentally from the ventricles. A biophysically detailed electrophysiology model is hence necessary to reproduce the experimentally observed phenomena like $Ca^{+2}$ wave propagation in human atrial myocytes. In this work, we present a novel detailed and yet computationally efficient electrophysiology model, its coupling with a contraction myofilament model and the effect of mechano-calcium feedback on coupling. This novel electromechanical model was calibrated for a collection of human atrial data and was evaluated by reproducing the rate adaptation property of action potential, $Ca^{+2}$ transient and the active force. The aim of this article is to present a new electromechanical model for human atrial myocyte and to analyse the mechanism behind the rate adaptation.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electromechanical coupling is crucial for modeling a realistic representation of $Ca^{+2}$ transient and $Ca^{+2}$ cycling. Cellular $Ca^{+2}$ dynamics in atria differ fundamentally from the ventricles. A biophysically detailed electrophysiology model is hence necessary to reproduce the experimentally observed phenomena like $Ca^{+2}$ wave propagation in human atrial myocytes. In this work, we present a novel detailed and yet computationally efficient electrophysiology model, its coupling with a contraction myofilament model and the effect of mechano-calcium feedback on coupling. This novel electromechanical model was calibrated for a collection of human atrial data and was evaluated by reproducing the rate adaptation property of action potential, $Ca^{+2}$ transient and the active force. The aim of this article is to present a new electromechanical model for human atrial myocyte and to analyse the mechanism behind the rate adaptation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种具有机械钙反馈效应的新型人心房机电心肌细胞模型
机电耦合是模拟真实的$Ca^{+2}$瞬态和$Ca^{+2}$循环的关键。心房细胞Ca^{+2}$的动态与心室有本质区别。因此,需要一个生物物理上详细的电生理模型来重现实验观察到的现象,如Ca^{+2}$波在人心房肌细胞中的传播。在这项工作中,我们提出了一种新的详细的、计算效率高的电生理模型,它与收缩肌丝模型的耦合以及机械钙反馈对耦合的影响。该新颖的机电模型针对人类心房数据进行了校准,并通过再现动作电位、Ca^{+2}$瞬态和主动力的速率适应特性进行了评估。本文的目的是提出一种新的心房肌细胞机电模型,并分析其速率适应的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Nonlinear Dynamic Response of Intrapartum Fetal Heart Rate to Uterine Pressure Heart Pulse Demodulation from Emfit Mattress Sensor Using Spectral and Source Separation Techniques Automated Algorithm for QRS Detection in Cardiac Arrest Patients with PEA Extraction Algorithm for Morphologically Preserved Non-Invasive Multi-Channel Fetal ECG Improved Pulse Pressure Estimation Based on Imaging Photoplethysmographic Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1