"Fazeelat Mazhar, Francesco Regazzoni, C. Bartolucci, C. Corsi, L. Dede’, A. Quarteroni, S. Severi
{"title":"A Novel Human Atrial Electromechanical Cardiomyocyte Model with Mechano-Calcium Feedback Effect","authors":"\"Fazeelat Mazhar, Francesco Regazzoni, C. Bartolucci, C. Corsi, L. Dede’, A. Quarteroni, S. Severi","doi":"10.22489/CinC.2022.195","DOIUrl":null,"url":null,"abstract":"Electromechanical coupling is crucial for modeling a realistic representation of $Ca^{+2}$ transient and $Ca^{+2}$ cycling. Cellular $Ca^{+2}$ dynamics in atria differ fundamentally from the ventricles. A biophysically detailed electrophysiology model is hence necessary to reproduce the experimentally observed phenomena like $Ca^{+2}$ wave propagation in human atrial myocytes. In this work, we present a novel detailed and yet computationally efficient electrophysiology model, its coupling with a contraction myofilament model and the effect of mechano-calcium feedback on coupling. This novel electromechanical model was calibrated for a collection of human atrial data and was evaluated by reproducing the rate adaptation property of action potential, $Ca^{+2}$ transient and the active force. The aim of this article is to present a new electromechanical model for human atrial myocyte and to analyse the mechanism behind the rate adaptation.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Electromechanical coupling is crucial for modeling a realistic representation of $Ca^{+2}$ transient and $Ca^{+2}$ cycling. Cellular $Ca^{+2}$ dynamics in atria differ fundamentally from the ventricles. A biophysically detailed electrophysiology model is hence necessary to reproduce the experimentally observed phenomena like $Ca^{+2}$ wave propagation in human atrial myocytes. In this work, we present a novel detailed and yet computationally efficient electrophysiology model, its coupling with a contraction myofilament model and the effect of mechano-calcium feedback on coupling. This novel electromechanical model was calibrated for a collection of human atrial data and was evaluated by reproducing the rate adaptation property of action potential, $Ca^{+2}$ transient and the active force. The aim of this article is to present a new electromechanical model for human atrial myocyte and to analyse the mechanism behind the rate adaptation.