Magnetic particle imaging: Model and reconstruction

H. Schomberg
{"title":"Magnetic particle imaging: Model and reconstruction","authors":"H. Schomberg","doi":"10.1109/ISBI.2010.5490155","DOIUrl":null,"url":null,"abstract":"Magnetic Particle Imaging is an emerging reconstructive imaging method that can create images of the spatial distribution of magnetizable nanoparticles in an object. A magnetic particle image is reconstructed by solving a discrete approximation to a linear integral equation that models the data acquisition. So far, an explicit formula for the kernel of this integral equation has been missing, forcing one to determine the matrix of the linear equation to be solved by time consuming measurements. Also, this matrix is huge and dense so that the reconstruction times tend to be long. Here, we present an explicit formula for the kernel of the modeling integral operator, transform this operator into a spatial convolution operator, and point out fast reconstruction algorithms that make use of Nonuniform Fast Fourier Transforms.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Magnetic Particle Imaging is an emerging reconstructive imaging method that can create images of the spatial distribution of magnetizable nanoparticles in an object. A magnetic particle image is reconstructed by solving a discrete approximation to a linear integral equation that models the data acquisition. So far, an explicit formula for the kernel of this integral equation has been missing, forcing one to determine the matrix of the linear equation to be solved by time consuming measurements. Also, this matrix is huge and dense so that the reconstruction times tend to be long. Here, we present an explicit formula for the kernel of the modeling integral operator, transform this operator into a spatial convolution operator, and point out fast reconstruction algorithms that make use of Nonuniform Fast Fourier Transforms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁颗粒成像:模型与重建
磁颗粒成像是一种新兴的重建成像方法,它可以创建物体中可磁化纳米颗粒空间分布的图像。通过求解离散近似的线性积分方程来重建磁颗粒图像,该方程模拟了数据采集过程。到目前为止,这个积分方程的核的显式公式一直缺失,迫使人们通过耗时的测量来确定线性方程的矩阵。此外,这个矩阵巨大而密集,因此重建时间往往很长。本文给出了建模积分算子核的显式公式,将该算子转化为空间卷积算子,并指出了利用非均匀快速傅里叶变换的快速重建算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced detection of cell paths in spatiotemporal plots for noninvasive microscopy of the human retina Automatic segmentation of pulmonary vasculature in thoracic CT scans with local thresholding and airway wall removal Fast and closed-form ensemble-average-propagator approximation from the 4th-order diffusion tensor Probabilistic branching node detection using AdaBoost and hybrid local features Multiphase level set for automated delineation of membrane-bound macromolecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1