Enhanced Automatic Image Parameter setting and Segmentation Method

Kedir Kamu Sirur, Ye Peng, Zhang Qinchuan
{"title":"Enhanced Automatic Image Parameter setting and Segmentation Method","authors":"Kedir Kamu Sirur, Ye Peng, Zhang Qinchuan","doi":"10.1145/3335656.3335697","DOIUrl":null,"url":null,"abstract":"There are a lot of works done to automatically set parameters and segment images based on Pulse Coupled Neural Networks (PCNN). In this study we propose an automatic parameters setting and segmentation method based on Intersecting Cortical Mode (ICM) which enables to overcome the basic limitation of PCNN based methods. We used the ICM as base and developed an enhanced automatic method which can withstand effects of multiple background and illumination during segmentation. Characteristics pixel values of the input image are used to deduce corresponding segmentation parameters. The experiment is done on Aerial Image Segmentation Dataset and Database of Human Segmented Natural Images. Our method outperformed for subjective and objective evaluations, also shown consistent assignment of parameter values. Also the proposed method is able to reduce the segmentation time by half and overcome the limitations of the existing automatic models.","PeriodicalId":396772,"journal":{"name":"Proceedings of the 2019 International Conference on Data Mining and Machine Learning","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 International Conference on Data Mining and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3335656.3335697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There are a lot of works done to automatically set parameters and segment images based on Pulse Coupled Neural Networks (PCNN). In this study we propose an automatic parameters setting and segmentation method based on Intersecting Cortical Mode (ICM) which enables to overcome the basic limitation of PCNN based methods. We used the ICM as base and developed an enhanced automatic method which can withstand effects of multiple background and illumination during segmentation. Characteristics pixel values of the input image are used to deduce corresponding segmentation parameters. The experiment is done on Aerial Image Segmentation Dataset and Database of Human Segmented Natural Images. Our method outperformed for subjective and objective evaluations, also shown consistent assignment of parameter values. Also the proposed method is able to reduce the segmentation time by half and overcome the limitations of the existing automatic models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强的自动图像参数设置和分割方法
基于脉冲耦合神经网络(Pulse Coupled Neural Networks, PCNN),在自动设置参数和分割图像方面做了大量的工作。在本研究中,我们提出了一种基于相交皮质模式(Intersecting Cortical Mode, ICM)的参数自动设置和分割方法,克服了基于PCNN方法的基本局限性。我们以ICM为基础,开发了一种增强的自动分割方法,该方法可以在分割过程中承受多个背景和光照的影响。利用输入图像的特征像素值来推导相应的分割参数。实验分别在航空图像分割数据集和人类自然图像分割数据库上进行。我们的方法优于主观和客观的评价,也显示一致的分配参数值。该方法能够将分割时间缩短一半,克服了现有自动模型的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Code Plagiarism Detection Model Based on Random Forest and Gradient Boosting Decision Tree Research on Vehicle Identification Method Based on Computer Vision Simulation for Agglomeration Effect of Internet Crowdfunding Model An improved FCM clustering algorithm based on cosine similarity Research on offline behavior similarity of consumers based on Spatio-temporal data set mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1