Forecasting Solar Potential Using Support Vector Regression

Subham Shaw, M. Prakash
{"title":"Forecasting Solar Potential Using Support Vector Regression","authors":"Subham Shaw, M. Prakash","doi":"10.1109/DEVIC.2019.8783431","DOIUrl":null,"url":null,"abstract":"Solar energy is one of the most commonly used renewable energy resources. To obtain reliable output from solar energy, prediction of solar radiation is necessary. In this paper, a solar radiation prediction model has been developed for New Alipore, Kolkata. Easily available meteorological parameters like temperature, pressure and humidity have been utilized as inputs, to build the prediction model. Two years data (2011–2012) have been used to develop the Support Vector Regression (SVR) based solar radiation prediction model. The results obtained from the prediction model have been validated with the help of statistical metrics, Root-Mean-Square Error (RMSE) and Coefficient of Determination $(\\mathrm{R}^{2})$. The results signifies that the performance of the developed model is better in comparison with the models existing in the literature.","PeriodicalId":294095,"journal":{"name":"2019 Devices for Integrated Circuit (DevIC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Devices for Integrated Circuit (DevIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVIC.2019.8783431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Solar energy is one of the most commonly used renewable energy resources. To obtain reliable output from solar energy, prediction of solar radiation is necessary. In this paper, a solar radiation prediction model has been developed for New Alipore, Kolkata. Easily available meteorological parameters like temperature, pressure and humidity have been utilized as inputs, to build the prediction model. Two years data (2011–2012) have been used to develop the Support Vector Regression (SVR) based solar radiation prediction model. The results obtained from the prediction model have been validated with the help of statistical metrics, Root-Mean-Square Error (RMSE) and Coefficient of Determination $(\mathrm{R}^{2})$. The results signifies that the performance of the developed model is better in comparison with the models existing in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用支持向量回归预测太阳能潜力
太阳能是最常用的可再生能源之一。为了获得可靠的太阳能输出,必须对太阳辐射进行预测。本文建立了加尔各答新阿里波雷的太阳辐射预报模型。利用容易获得的气象参数,如温度、压力和湿度作为输入,建立预测模型。利用2011-2012年的两年数据,建立了基于支持向量回归(SVR)的太阳辐射预测模型。利用统计指标、均方根误差(RMSE)和决定系数$(\ mathm {R}^{2})$对预测模型的结果进行了验证。结果表明,与文献中已有的模型相比,所建立的模型具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical Drain Current Model of UTBB SOI MOSFET with lateral dual gates to Suppress Short Channel Effect Effect of AlGaN Back Barrier on InAlN/AlN/GaN E-Mode HEMTs Work-function modulated hetero gate charge plasma TFET to enhance the device performance All-optical Walsh-Hadamard code Generation using MZI Performance Analysis of Staggered Heterojunction based SRG TFET biosensor for health IoT application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1