IoT Edge Device Based Key Frame Extraction for Face in Video Recognition

Xuan Qi, Chen Liu, S. Schuckers
{"title":"IoT Edge Device Based Key Frame Extraction for Face in Video Recognition","authors":"Xuan Qi, Chen Liu, S. Schuckers","doi":"10.1109/CCGRID.2018.00087","DOIUrl":null,"url":null,"abstract":"Following the development of computing and communication technologies, the idea of Internet of Things (IoT) has been realized not only at research level but also at application level. Among various IoT-related application fields, biometrics applications, especially face recognition, are widely applied in video-based surveillance, access control, law enforcement and many other scenarios. In this paper, we introduce a Face in Video Recognition (FivR) framework which performs real-time key-frame extraction on IoT edge devices, then conduct face recognition using the extracted key-frames on the Cloud back-end. With our key-frame extraction engine, we are able to reduce the data volume hence dramatically relief the processing pressure of the cloud back-end. Our experimental results show with IoT edge device acceleration, it is possible to implement face in video recognition application without introducing the middle-ware or cloud-let layer, while still achieving real-time processing speed.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Following the development of computing and communication technologies, the idea of Internet of Things (IoT) has been realized not only at research level but also at application level. Among various IoT-related application fields, biometrics applications, especially face recognition, are widely applied in video-based surveillance, access control, law enforcement and many other scenarios. In this paper, we introduce a Face in Video Recognition (FivR) framework which performs real-time key-frame extraction on IoT edge devices, then conduct face recognition using the extracted key-frames on the Cloud back-end. With our key-frame extraction engine, we are able to reduce the data volume hence dramatically relief the processing pressure of the cloud back-end. Our experimental results show with IoT edge device acceleration, it is possible to implement face in video recognition application without introducing the middle-ware or cloud-let layer, while still achieving real-time processing speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于IoT边缘设备的视频识别人脸关键帧提取
随着计算和通信技术的发展,物联网(IoT)的概念不仅在研究层面得到了实现,而且在应用层面得到了实现。在物联网相关的诸多应用领域中,生物识别应用,尤其是人脸识别,被广泛应用于基于视频的监控、门禁、执法等诸多场景。在本文中,我们介绍了一个人脸视频识别(FivR)框架,该框架在物联网边缘设备上进行实时关键帧提取,然后在云后端使用提取的关键帧进行人脸识别。通过我们的关键帧提取引擎,我们能够减少数据量,从而大大减轻云后端的处理压力。我们的实验结果表明,通过物联网边缘设备加速,可以在不引入中间件或云let层的情况下实现视频识别应用中的人脸,同时仍然可以实现实时处理速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme-Scale Realistic Stencil Computations on Sunway TaihuLight with Ten Million Cores RideMatcher: Peer-to-Peer Matching of Passengers for Efficient Ridesharing Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds Improving Energy Efficiency of Database Clusters Through Prefetching and Caching Main-Memory Requirements of Big Data Applications on Commodity Server Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1