Range image super-resolution via reconstruction of sparse range data

A. Bhavsar
{"title":"Range image super-resolution via reconstruction of sparse range data","authors":"A. Bhavsar","doi":"10.1109/ISSP.2013.6526902","DOIUrl":null,"url":null,"abstract":"We propose a method for super-resolution of range image. Our approach leverages the interpretation of LR image as sparse samples on the HR grid. Based on this interpretation, we build upon a recent approach which reconstructs dense range images from sparse range data. We notice certain shortcomings of this approach and propose some improvements, particularly, to address the super-resolution problem. Our method only uses a single colour image in addition to the range observation in the super-resolution process. Using the proposed approach, we demonstrate super-resolution results for large factors (e.g. 4 and 8) with good localization and accuracy.","PeriodicalId":354719,"journal":{"name":"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSP.2013.6526902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a method for super-resolution of range image. Our approach leverages the interpretation of LR image as sparse samples on the HR grid. Based on this interpretation, we build upon a recent approach which reconstructs dense range images from sparse range data. We notice certain shortcomings of this approach and propose some improvements, particularly, to address the super-resolution problem. Our method only uses a single colour image in addition to the range observation in the super-resolution process. Using the proposed approach, we demonstrate super-resolution results for large factors (e.g. 4 and 8) with good localization and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏距离数据重建的距离图像超分辨率
提出了一种距离图像的超分辨方法。我们的方法利用LR图像作为HR网格上的稀疏样本的解释。基于这种解释,我们建立了一种最近的方法,从稀疏距离数据重建密集距离图像。我们注意到这种方法的某些缺点,并提出了一些改进,特别是解决超分辨率问题。该方法在超分辨过程中除了距离观测外,只使用单色图像。使用该方法,我们展示了具有良好定位和精度的大因子(例如4和8)的超分辨率结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic sign representation using sparse-representations Adaptive fractal intra-frame video coding technique using parallel GPU environment An OCR for separation and identification of mixed English — Gujarati digits using kNN classifier An intelligent technique based on code algorithm for determination of optimum gain values of PID controller in an AGC system Language identification system using MFCC and prosodic features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1