Enhancing single-trial mental workload estimation through xDAWN spatial filtering

R. Roy, S. Bonnet, S. Charbonnier, A. Campagne
{"title":"Enhancing single-trial mental workload estimation through xDAWN spatial filtering","authors":"R. Roy, S. Bonnet, S. Charbonnier, A. Campagne","doi":"10.1109/NER.2015.7146634","DOIUrl":null,"url":null,"abstract":"Mental state monitoring is a topical issue in neuroengineering, more particularly for passive brain-computer interface (pBCI) applications. One of the mental states that are currently under focus is mental workload. The level of workload can be estimated from electroencephalographic activity (EEG) and markers derived from this signal. In active BCI applications, a well-known neurophysiological marker, the event-related potential (ERP), is commonly enhanced using a spatial filtering step. In this study, we evaluated how a spatial filtering method such as the xDAWN algorithm could improve mental workload classification performance. Twenty participants performed a Sternberg memory task for 18 minutes with pseudorandomized trials of low vs. high workload (2/6 digits to memorize). Three signal processing chains were compared on their performance to estimate mental workload from the single-trial ERPs of the test item (i.e. present/absent in the memorized list). All 3 included an FLDA classifier with a shrinkage covariance estimation and a 10-fold cross-validation. One chain used the ERPs of a relevant electrode for workload estimation (Cz) and the 2 others used the ERPs of the 32 electrodes and an xDAWN spatial filtering step with either 1 or 2 virtual electrodes kept for classification. Statistical analyses revealed that spatial filtering significantly improved mental workload estimation, with up to 98% of correct classification using the xDAWN algorithm and 2 virtual electrodes.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Mental state monitoring is a topical issue in neuroengineering, more particularly for passive brain-computer interface (pBCI) applications. One of the mental states that are currently under focus is mental workload. The level of workload can be estimated from electroencephalographic activity (EEG) and markers derived from this signal. In active BCI applications, a well-known neurophysiological marker, the event-related potential (ERP), is commonly enhanced using a spatial filtering step. In this study, we evaluated how a spatial filtering method such as the xDAWN algorithm could improve mental workload classification performance. Twenty participants performed a Sternberg memory task for 18 minutes with pseudorandomized trials of low vs. high workload (2/6 digits to memorize). Three signal processing chains were compared on their performance to estimate mental workload from the single-trial ERPs of the test item (i.e. present/absent in the memorized list). All 3 included an FLDA classifier with a shrinkage covariance estimation and a 10-fold cross-validation. One chain used the ERPs of a relevant electrode for workload estimation (Cz) and the 2 others used the ERPs of the 32 electrodes and an xDAWN spatial filtering step with either 1 or 2 virtual electrodes kept for classification. Statistical analyses revealed that spatial filtering significantly improved mental workload estimation, with up to 98% of correct classification using the xDAWN algorithm and 2 virtual electrodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过xDAWN空间滤波增强单次脑力工作负荷估计
精神状态监测是神经工程中的一个热点问题,尤其是被动脑机接口(pBCI)应用。目前关注的精神状态之一是精神负荷。负荷水平可以通过脑电图(EEG)和由该信号产生的标记物来估计。在主动脑机接口应用中,事件相关电位(ERP)是一种众所周知的神经生理标记,通常使用空间滤波步骤来增强。在这项研究中,我们评估了空间过滤方法(如xDAWN算法)如何提高心理工作负载分类性能。20名参与者进行了为期18分钟的Sternberg记忆任务,并进行了低工作量和高工作量(2/6个数字记忆)的伪随机试验。比较三个信号处理链的表现,以估计测试项目(即在记忆列表中存在/不存在)的单次erp的心理工作量。所有3个都包括一个FLDA分类器,具有收缩协方差估计和10倍交叉验证。其中一条链使用相关电极的erp进行工作量估计(Cz),另外两条链使用32个电极的erp和xDAWN空间滤波步骤,保留1或2个虚拟电极进行分类。统计分析表明,空间滤波显著提高了脑力工作量估计,使用xDAWN算法和2个虚拟电极,准确率高达98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iNODE in-vivo testing for selective vagus nerve recording and stimulation Computational studies on urinary bladder smooth muscle: Modeling ion channels and their role in generating electrical activity Fast calibration of a thirteen-command BCI by simulating SSVEPs from trains of transient VEPs - towards time-domain SSVEP BCI paradigms A hybrid NMES-exoskeleton for real objects interaction Computationally efficient, configurable, causal, real-time phase detection applied to local field potential oscillations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1