Evolutionary inference of rule-based trading agents from real-world stock price histories and their use in forecasting

L. Charbonneau, N. Kharma
{"title":"Evolutionary inference of rule-based trading agents from real-world stock price histories and their use in forecasting","authors":"L. Charbonneau, N. Kharma","doi":"10.1145/1569901.1570097","DOIUrl":null,"url":null,"abstract":"We propose a representation of the stock-trading market as a group of rule-based trading agents, with the agents evolved using past prices. We encode each rule-based agent as a genome, and then describe how a steady-state genetic algorithm can evolve a group of these genomes (i.e. an inverted market) using past stock prices. This market is then used to generate forecasts of future stocks prices, which are compared to actual future stock prices. We show how our method outperforms standard financial time-series forecasting models, such as ARIMA and Lognormal, on actual stock price data taken from real-world archives. Track: Real World Applications (RWA).","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a representation of the stock-trading market as a group of rule-based trading agents, with the agents evolved using past prices. We encode each rule-based agent as a genome, and then describe how a steady-state genetic algorithm can evolve a group of these genomes (i.e. an inverted market) using past stock prices. This market is then used to generate forecasts of future stocks prices, which are compared to actual future stock prices. We show how our method outperforms standard financial time-series forecasting models, such as ARIMA and Lognormal, on actual stock price data taken from real-world archives. Track: Real World Applications (RWA).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于现实世界股票价格历史的规则交易代理的进化推理及其在预测中的应用
我们将股票交易市场表示为一组基于规则的交易代理,这些代理使用过去的价格进行演化。我们将每个基于规则的代理编码为基因组,然后描述稳态遗传算法如何使用过去的股票价格来进化一组这些基因组(即反向市场)。然后,这个市场被用来预测未来的股票价格,并将其与未来的实际股票价格进行比较。我们展示了我们的方法如何优于标准的金融时间序列预测模型,如ARIMA和Lognormal,在取自真实世界档案的实际股票价格数据上。专题:现实世界应用(RWA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metaheuristics for graph bisection Bayesian network structure learning using cooperative coevolution Session details: Track 10: genetic programming Simulating human grandmasters: evolution and coevolution of evaluation functions An evolutionary approach to feature function generation in application to biomedical image patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1