{"title":"Objective-Aligned Regression for Two-Stage Linear Programs","authors":"Alexander S. Estes, Jean-Philippe P. Richard","doi":"10.2139/ssrn.3469897","DOIUrl":null,"url":null,"abstract":"We study an approach to regression that we call objective-aligned fitting, which is applicable when the regression model is used to predict uncertain parameters of some objective problem. Rather than minimizing a typical loss function, such as squared error, we approximately minimize the objective value of the resulting solutions to the nominal optimization problem. While previous work on objective-aligned fitting has tended to focus on uncertainty in the objective function, we consider the case in which the nominal optimization problem is a two-stage linear program with uncertainty in the right-hand side. We define the objective-aligned loss function for the problem and prove structural properties concerning this loss function. Since the objective-aligned loss function is generally non-convex, we develop a convex approximation. We propose a method for fitting a linear regression model to the convex approximation of the objective-aligned loss. Computational results indicate that this procedure can lead to higher-quality solutions than existing regression procedures.","PeriodicalId":406435,"journal":{"name":"CompSciRN: Other Machine Learning (Topic)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Other Machine Learning (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3469897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We study an approach to regression that we call objective-aligned fitting, which is applicable when the regression model is used to predict uncertain parameters of some objective problem. Rather than minimizing a typical loss function, such as squared error, we approximately minimize the objective value of the resulting solutions to the nominal optimization problem. While previous work on objective-aligned fitting has tended to focus on uncertainty in the objective function, we consider the case in which the nominal optimization problem is a two-stage linear program with uncertainty in the right-hand side. We define the objective-aligned loss function for the problem and prove structural properties concerning this loss function. Since the objective-aligned loss function is generally non-convex, we develop a convex approximation. We propose a method for fitting a linear regression model to the convex approximation of the objective-aligned loss. Computational results indicate that this procedure can lead to higher-quality solutions than existing regression procedures.