{"title":"Evanescent-field-controlled nano-pattern transfer and micro-manipulation","authors":"T. Ono, M. Esashi","doi":"10.1109/MEMSYS.1998.659806","DOIUrl":null,"url":null,"abstract":"Utilizing evanescent fields (optical near field), we demonstrate a novel processing beyond the diffraction limits of lights. One is relating to a pattern transfer in a nano-scale dimension. The other is a manipulation of micro-objects. The nano-scaled patterns beyond the diffraction limits were successfully transferred by using evanescent field generated near metal slits. For this purpose, masks having the metal slits and apertures were fabricated by using an electron beam (EB) and an atomic force microscope (AFM). AFM-based fabrication method was applied to fabricate nano-apertures of which diameters are below 50 nm. UV was irradiated using a mercury lamp keeping the mask in contact with a wafer on which conventional photo-resist was coated. For obtaining a small pattern, it is required to come the mask into contact with the substrate completely. Deformable silicon membrane was effective for this purpose. The nano-scale patterns having a size below 200 nm were successfully obtained by transferring the mask pattern onto the conventional photo-resist. On the other hands, fundamental experiments about the manipulation of particles with the evanescent field were made by using a patterned thin metal. It was confirmed experimentally that the evanescent field created on the metal-slits and thin metal film gives the particles a force. By using this force, trappings, arrangements and movements were demonstrated.","PeriodicalId":340972,"journal":{"name":"Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.1998.659806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Utilizing evanescent fields (optical near field), we demonstrate a novel processing beyond the diffraction limits of lights. One is relating to a pattern transfer in a nano-scale dimension. The other is a manipulation of micro-objects. The nano-scaled patterns beyond the diffraction limits were successfully transferred by using evanescent field generated near metal slits. For this purpose, masks having the metal slits and apertures were fabricated by using an electron beam (EB) and an atomic force microscope (AFM). AFM-based fabrication method was applied to fabricate nano-apertures of which diameters are below 50 nm. UV was irradiated using a mercury lamp keeping the mask in contact with a wafer on which conventional photo-resist was coated. For obtaining a small pattern, it is required to come the mask into contact with the substrate completely. Deformable silicon membrane was effective for this purpose. The nano-scale patterns having a size below 200 nm were successfully obtained by transferring the mask pattern onto the conventional photo-resist. On the other hands, fundamental experiments about the manipulation of particles with the evanescent field were made by using a patterned thin metal. It was confirmed experimentally that the evanescent field created on the metal-slits and thin metal film gives the particles a force. By using this force, trappings, arrangements and movements were demonstrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
倏逝场控制纳米图案转移和微操作
利用倏逝场(光学近场),我们展示了一种超越光衍射极限的新处理方法。一个是与纳米尺度上的图案转移有关。另一种是对微型物体的操纵。利用金属狭缝附近产生的倏逝场,成功地转移了超出衍射极限的纳米尺度图案。为此,利用电子束(EB)和原子力显微镜(AFM)制作了具有金属狭缝和孔的掩膜。采用原子力显微镜制备方法制备了直径小于50 nm的纳米孔。使用汞灯照射紫外线,使掩模与涂有常规光刻胶的晶圆片接触。为了获得小的图案,需要使掩模与基板完全接触。可变形硅膜在这方面是有效的。通过将掩模图案转移到传统的光致抗蚀剂上,成功地获得了尺寸小于200nm的纳米级图案。另一方面,关于用消失场操纵粒子的基本实验是用有图案的薄金属进行的。实验证实,在金属狭缝和金属薄膜上产生的倏逝场对粒子有作用力。通过使用这种力量,可以展示服饰、安排和动作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Micro force sensor for intravascular neurosurgery and in vivo experiment Laser display technology A silicon IR-source and CO/sub 2/-chamber for CO/sub 2/ measurements Design and fabrication of a novel integrated floating-electrode-"electret"-microphone (FFEM) Microfabrication and parallel operation of 5/spl times/5 2D AFM cantilever arrays for data storage and imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1