Automated design space exploration of transient fault detectable datapath based on user specified power and delay constraints

A. Sengupta, Saumya Bhadauria
{"title":"Automated design space exploration of transient fault detectable datapath based on user specified power and delay constraints","authors":"A. Sengupta, Saumya Bhadauria","doi":"10.1109/VLSI-DAT.2015.7114570","DOIUrl":null,"url":null,"abstract":"A novel automated design space exploration (DSE) approach of multi-cycle transient fault detectable datapath based on multi-objective user constraints (power and delay) during high level synthesis (HLS) is presented in this paper. To the best of the authors' knowledge, this is the first work in the literature to solve this problem. The presented approach, driven by bacterial foraging optimization (BFO) algorithm provides easy flexibility to change direction in the design space through tumble/swim actions if a search path is found ineffective. The approach is highly capable of reaching true Pareto optimal region indicated by the closeness of our non-dominated solutions to the true Pareto front and their uniform spreading over the Pareto curve (implying diversity). The contributions of this paper are as follows: a) novel exploration approach for generating high quality transient fault detectable structure based on user provided requirements of power-delay, which is capable of transient error detection; b) novel fault detectable algorithm for handling single and multi-cycle transient faults. The results of the proposed approach indicated an average improvement in Quality of Results (QoR) of >9% and reduction in hardware usage of > 26 % compared to recent approaches that are closer in solving a similar objective.","PeriodicalId":369130,"journal":{"name":"VLSI Design, Automation and Test(VLSI-DAT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI Design, Automation and Test(VLSI-DAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-DAT.2015.7114570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A novel automated design space exploration (DSE) approach of multi-cycle transient fault detectable datapath based on multi-objective user constraints (power and delay) during high level synthesis (HLS) is presented in this paper. To the best of the authors' knowledge, this is the first work in the literature to solve this problem. The presented approach, driven by bacterial foraging optimization (BFO) algorithm provides easy flexibility to change direction in the design space through tumble/swim actions if a search path is found ineffective. The approach is highly capable of reaching true Pareto optimal region indicated by the closeness of our non-dominated solutions to the true Pareto front and their uniform spreading over the Pareto curve (implying diversity). The contributions of this paper are as follows: a) novel exploration approach for generating high quality transient fault detectable structure based on user provided requirements of power-delay, which is capable of transient error detection; b) novel fault detectable algorithm for handling single and multi-cycle transient faults. The results of the proposed approach indicated an average improvement in Quality of Results (QoR) of >9% and reduction in hardware usage of > 26 % compared to recent approaches that are closer in solving a similar objective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于用户指定功率和延迟约束的暂态故障检测数据路径的自动设计空间探索
提出了一种基于多目标用户约束(功率和时延)的高阶综合多周期暂态故障检测数据路径自动设计空间探索方法。据作者所知,这是文献中第一个解决这个问题的作品。该方法由细菌觅食优化(BFO)算法驱动,当发现搜索路径无效时,可以通过翻滚/游动动作轻松灵活地改变设计空间中的方向。该方法非常能够达到真正的帕累托最优区域,这表明我们的非支配解与真正的帕累托前沿的接近程度以及它们在帕累托曲线上的均匀分布(暗示多样性)。本文的贡献如下:1)探索了一种基于用户提供的电力延迟需求生成高质量暂态故障检测结构的新方法,该结构能够检测暂态错误;B)处理单周期和多周期瞬态故障的新型故障检测算法。该方法的结果表明,与最近解决类似目标的方法相比,结果质量(QoR)的平均改善>9%,硬件使用减少> 26%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 127 fJ/conv. continuous-time delta-sigma modulator with a DWA-embedded two-step time-domain quantizer Biomedical devices and instruments for point-of-care diagnosis Cost challenges on the way to the Internet of Things An in-pixel equalizer with kTC noise cancellation and FPN reduction for time-of-flight CMOS image sensor A dual-edge sampling CES delay-locked loop based clock and data recovery circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1