Michalis D. Mantzaris, E. Andreakos, D. Fotiadis, Vassiliki T. Potsika, P. Siogkas, Vassiliki I. Kigka, V. Pezoulas, Ioannis G. Pappas, T. Exarchos, I. Končar, J. Pelisek
{"title":"A Multimodal Advanced Approach for the Stratification of Carotid Artery Disease","authors":"Michalis D. Mantzaris, E. Andreakos, D. Fotiadis, Vassiliki T. Potsika, P. Siogkas, Vassiliki I. Kigka, V. Pezoulas, Ioannis G. Pappas, T. Exarchos, I. Končar, J. Pelisek","doi":"10.1109/BIBE.2019.00133","DOIUrl":null,"url":null,"abstract":"The scope of this paper is to present the novel risk stratification framework for carotid artery disease which is under development in the TAXINOMISIS study. The study is implementing a multimodal strategy, integrating big data and advanced modeling approaches, in order to improve the stratification and management of patients with carotid artery disease, who are at risk for manifesting cerebrovascular events such as stroke. Advanced image processing tools for 3D reconstruction of the carotid artery bifurcation together with hybrid computational models of plaque growth, based on fluid dynamics and agent based modeling, are under development. Model predictions on plaque growth, rupture or erosion combined with big data from unique longitudinal cohorts and biobanks, including multi-omics, will be utilized as inputs to machine learning and data mining algorithms in order to develop a new risk stratification platform able to identify patients at high risk for cerebrovascular events, in a precise and personalized manner. Successful completion of the TAXINOMISIS platform will lead to advances beyond the state of the art in risk stratification of carotid artery disease and rationally reduce unnecessary operations, refine medical treatment and open new directions for therapeutic interventions, with high socioeconomic impact.","PeriodicalId":318819,"journal":{"name":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2019.00133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The scope of this paper is to present the novel risk stratification framework for carotid artery disease which is under development in the TAXINOMISIS study. The study is implementing a multimodal strategy, integrating big data and advanced modeling approaches, in order to improve the stratification and management of patients with carotid artery disease, who are at risk for manifesting cerebrovascular events such as stroke. Advanced image processing tools for 3D reconstruction of the carotid artery bifurcation together with hybrid computational models of plaque growth, based on fluid dynamics and agent based modeling, are under development. Model predictions on plaque growth, rupture or erosion combined with big data from unique longitudinal cohorts and biobanks, including multi-omics, will be utilized as inputs to machine learning and data mining algorithms in order to develop a new risk stratification platform able to identify patients at high risk for cerebrovascular events, in a precise and personalized manner. Successful completion of the TAXINOMISIS platform will lead to advances beyond the state of the art in risk stratification of carotid artery disease and rationally reduce unnecessary operations, refine medical treatment and open new directions for therapeutic interventions, with high socioeconomic impact.