{"title":"Radiation-induced soft error analysis of SRAMs in SOI FinFET technology: A device to circuit approach","authors":"S. Kiamehr, T. Osiecki, M. Tahoori, S. Nassif","doi":"10.1145/2593069.2593196","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive analysis of radiation-induced soft errors of SRAMs designed in SOI FinFET technology. For this purpose, we propose a cross layer approach starting from a 3D simulation of particle interactions in FinFET structures up to circuit level analysis by considering the layout of the memory array. This approach enables us to consider the effect of different factors such as supply voltage and process variation on Soft Error Rate (SER) of FinFET SRAM memory arrays. Our analysis shows that proton-induced soft errors are becoming important and comparable to the SER induced by alpha-particles especially for low supply voltages (low power applications). Moreover, we observe that the ratio of Multiple Bit Upset (MBU) to Single Event Upset (SEU) for alpha-particle radiation is much higher than that of proton.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
This paper presents a comprehensive analysis of radiation-induced soft errors of SRAMs designed in SOI FinFET technology. For this purpose, we propose a cross layer approach starting from a 3D simulation of particle interactions in FinFET structures up to circuit level analysis by considering the layout of the memory array. This approach enables us to consider the effect of different factors such as supply voltage and process variation on Soft Error Rate (SER) of FinFET SRAM memory arrays. Our analysis shows that proton-induced soft errors are becoming important and comparable to the SER induced by alpha-particles especially for low supply voltages (low power applications). Moreover, we observe that the ratio of Multiple Bit Upset (MBU) to Single Event Upset (SEU) for alpha-particle radiation is much higher than that of proton.