Segmentation of oil palm area based on GLCM-SVM and NDVI

S. Daliman, S. Rahman, S. A. Abu Bakar, I. Busu
{"title":"Segmentation of oil palm area based on GLCM-SVM and NDVI","authors":"S. Daliman, S. Rahman, S. A. Abu Bakar, I. Busu","doi":"10.1109/TENCONSPRING.2014.6863113","DOIUrl":null,"url":null,"abstract":"This paper presents application of texture analysis using gray-level co-occurrence matrix (GLCM) for segmentation of oil palm area based on WorldView-2 imagery data. Different parameters of GLCM consisting of five distance spacing and three directions will be calculated, where eight texture features will be extracted. Based on land-use categories determined in WorldView-2 image, the features for oil palm and non-oil palm will be trained and classified using support vector machine (SVM). Segmentation based on 10×10, 20×20, 40×40 and 80×80 window will be determined by using the resulting output of SVM classification. Then, the normalized difference vegetation index (NDVI) of segmentation area will be calculated. Accuracy of oil palm area segmentation will be determined. The resulting segmentation of oil palm area shows a promising result that it can be used for intention of developing automatic oil palm tree counting.","PeriodicalId":270495,"journal":{"name":"2014 IEEE REGION 10 SYMPOSIUM","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE REGION 10 SYMPOSIUM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2014.6863113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper presents application of texture analysis using gray-level co-occurrence matrix (GLCM) for segmentation of oil palm area based on WorldView-2 imagery data. Different parameters of GLCM consisting of five distance spacing and three directions will be calculated, where eight texture features will be extracted. Based on land-use categories determined in WorldView-2 image, the features for oil palm and non-oil palm will be trained and classified using support vector machine (SVM). Segmentation based on 10×10, 20×20, 40×40 and 80×80 window will be determined by using the resulting output of SVM classification. Then, the normalized difference vegetation index (NDVI) of segmentation area will be calculated. Accuracy of oil palm area segmentation will be determined. The resulting segmentation of oil palm area shows a promising result that it can be used for intention of developing automatic oil palm tree counting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GLCM-SVM和NDVI的油棕面积分割
在WorldView-2图像数据的基础上,应用灰度共生矩阵(GLCM)纹理分析方法对油棕区域进行分割。计算由5个距离间距和3个方向组成的GLCM的不同参数,提取8个纹理特征。基于WorldView-2图像中确定的土地利用类别,使用支持向量机(SVM)对油棕和非油棕的特征进行训练和分类。基于10×10, 20×20, 40×40和80×80窗口的分割将使用SVM分类的结果输出来确定。然后,计算分割区域的归一化植被指数(NDVI)。确定油棕区域分割的准确性。由此得到的油棕区域分割结果显示出良好的效果,可用于油棕树自动计数的开发意图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced mobile lightweight medium access control protocol for multi-hop wireless sensor network On the validity of Gaussian approximations to exact test statistics of energy detector based spectrum sensing for cognitive radios Blind identification of source mobile devices using VoIP calls An adaptive noise cancelation model for removal of noise from modeled ECG signals WSN sensors for precision agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1