An efficient conjugate residual detector for massive MIMO systems

Yufeng Yang, Ye Xue, X. You, Chuan Zhang
{"title":"An efficient conjugate residual detector for massive MIMO systems","authors":"Yufeng Yang, Ye Xue, X. You, Chuan Zhang","doi":"10.1109/SiPS.2017.8109975","DOIUrl":null,"url":null,"abstract":"In nowadays wireless communication systems, massive multiple-input multiple-output (MIMO) technique brings better energy efficiency and coverage but higher computational complexity than small-scale MIMO. For linear detection such as minimum mean square error (MMSE), prohibitive complexity lies in solving large-scale linear equations. For a better tradeoff between BER performance and computational complexity, iterative linear methods like conjugate gradient (CG) have been applied for massive MIMO detection. By leaving out a matrix-vector product of CG, conjugate residual (CR) further achieves lower computational complexity with similar BER performance compared to CG. Since the BER performance can be improved by utilizing pre-condition with incomplete Cholesky (IC) factorization, pre-conditioned conjugate residual (PCR) is proposed. Simulation results indicate that PCR method achieves better performance than both CR and CG methods. It has 1 dB performance improvement than CG at BER = 5 χ Analysis shows that CR achieves 20% computational complexity reduction compared with CG when antenna configuration is 128 χ 60. With the same configuration, PCR reduces complexity by 66% while achieves similar BER performance compared with the detector with Cholesky decomposition. Finally, the corresponding VLSI architecture is proposed in detail.","PeriodicalId":251688,"journal":{"name":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2017.8109975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In nowadays wireless communication systems, massive multiple-input multiple-output (MIMO) technique brings better energy efficiency and coverage but higher computational complexity than small-scale MIMO. For linear detection such as minimum mean square error (MMSE), prohibitive complexity lies in solving large-scale linear equations. For a better tradeoff between BER performance and computational complexity, iterative linear methods like conjugate gradient (CG) have been applied for massive MIMO detection. By leaving out a matrix-vector product of CG, conjugate residual (CR) further achieves lower computational complexity with similar BER performance compared to CG. Since the BER performance can be improved by utilizing pre-condition with incomplete Cholesky (IC) factorization, pre-conditioned conjugate residual (PCR) is proposed. Simulation results indicate that PCR method achieves better performance than both CR and CG methods. It has 1 dB performance improvement than CG at BER = 5 χ Analysis shows that CR achieves 20% computational complexity reduction compared with CG when antenna configuration is 128 χ 60. With the same configuration, PCR reduces complexity by 66% while achieves similar BER performance compared with the detector with Cholesky decomposition. Finally, the corresponding VLSI architecture is proposed in detail.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模MIMO系统的有效共轭残差检测器
在当今的无线通信系统中,大规模多输入多输出(MIMO)技术具有比小规模多输入多输出(MIMO)技术更高的能量效率和覆盖范围,但其计算复杂度也比小规模多输入多输出(MIMO)技术高。对于线性检测,如最小均方误差(MMSE),令人望而却步的复杂性在于求解大规模线性方程。为了更好地平衡误码率性能和计算复杂度,共轭梯度(CG)等迭代线性方法已被应用于大规模MIMO检测。通过去掉CG的矩阵向量积,共轭残差(CR)进一步实现了与CG相比更低的计算复杂度和相似的误码率性能。由于利用不完全Cholesky (IC)分解的预条件可以提高误码率,因此提出了预条件共轭残差(pre-conditioned conjugate residual, PCR)。仿真结果表明,PCR方法比CR和CG方法具有更好的性能。分析表明,当天线配置为128 χ 60时,CR比CG的计算复杂度降低了20%。与采用Cholesky分解的检测器相比,在相同配置下,PCR降低了66%的复杂性,同时获得了相似的BER性能。最后,详细提出了相应的VLSI体系结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the performance of divide-and-conquer sequential matrix diagonalisation for large broadband sensor arrays Design space exploration of dataflow-based Smith-Waterman FPGA implementations Hardware error correction using local syndromes A stochastic number representation for fully homomorphic cryptography Statistical analysis of Post-HEVC encoded videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1