Multi-objective Optimization Scheduling Problem of VPP on Generation Side and Demand Side based on Time-of-use Electricity Price

Yongbo Li, Honghu Cheng, Zhemin Lin, Sheng Wang, Xijun Ren, Yutong Ye
{"title":"Multi-objective Optimization Scheduling Problem of VPP on Generation Side and Demand Side based on Time-of-use Electricity Price","authors":"Yongbo Li, Honghu Cheng, Zhemin Lin, Sheng Wang, Xijun Ren, Yutong Ye","doi":"10.1109/CEECT55960.2022.10030318","DOIUrl":null,"url":null,"abstract":"This paper presents an optimization model with strong universality, which involves the cost model of the VPP internal generator set, the VPP internal elastic load demand model, the maximum self-supply model and the maximum benefit model in the optimization objective of VPP. In order to further explore the influence of the uncertainty on the generation side when large-scale new energy is connected to the power grid, the influence of the characteristics of the aggregated DG inside VPP on the scheduling results is further analyzed. Finally, the VPP scheduling model is designed to study how to effectively decide the combined operation of internal pumped storage and energy storage batteries under the guidance of VPP's participation in the market price mechanism, so as to achieve the optimal goal. The model is based on the actual data, and the particle swarm optimization algorithm is used to verify the validity and rationality of the model.","PeriodicalId":187017,"journal":{"name":"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEECT55960.2022.10030318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an optimization model with strong universality, which involves the cost model of the VPP internal generator set, the VPP internal elastic load demand model, the maximum self-supply model and the maximum benefit model in the optimization objective of VPP. In order to further explore the influence of the uncertainty on the generation side when large-scale new energy is connected to the power grid, the influence of the characteristics of the aggregated DG inside VPP on the scheduling results is further analyzed. Finally, the VPP scheduling model is designed to study how to effectively decide the combined operation of internal pumped storage and energy storage batteries under the guidance of VPP's participation in the market price mechanism, so as to achieve the optimal goal. The model is based on the actual data, and the particle swarm optimization algorithm is used to verify the validity and rationality of the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分时电价的发电侧和需求侧VPP多目标优化调度问题
本文提出了一个具有较强通用性的优化模型,该模型涉及VPP内部发电机组的成本模型、VPP内部弹性负荷需求模型、VPP优化目标中的最大自供模型和最大效益模型。为了进一步探讨大规模新能源并网时不确定性对发电侧的影响,进一步分析VPP内部聚合DG的特性对调度结果的影响。最后,设计VPP调度模型,研究在VPP参与市场价格机制的指导下,如何有效地决定内部抽水蓄能和储能电池的联合运行,从而实现最优目标。该模型基于实际数据,并利用粒子群优化算法验证了模型的有效性和合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimization model based interval power flow analysis method considering the tracking characteristic of static voltage generator Design of Liquid Level Monitoring and Alarm System in Transformer Accident Oil Pool Mechanism Analysis of the SSR Suppression in DFIG-Based Wind farm Systems with SVCs Evaluation Method of Aging State of Oil-Paper Insulation Based on Time Domain Dielectric Response Study on the Effect of Multi-circuit Laying on Ampacity of Low Smoke Halogen-free Cable
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1