Multi Features-based Baseband Modulation Classification using Support Vector Machine

William Damario Lukito, Farras Eldy Rashad, Effrina Yanti Hamid
{"title":"Multi Features-based Baseband Modulation Classification using Support Vector Machine","authors":"William Damario Lukito, Farras Eldy Rashad, Effrina Yanti Hamid","doi":"10.1109/ICRAMET53537.2021.9650496","DOIUrl":null,"url":null,"abstract":"This research discusses the implementation of machine learning for modulation classification purpose. In order to proof the concept, 6 types of modulation have been selected, i.e., BPSK, QPSK, 8-PSK, 16-QAM, BFSK, and 8-PAM. Machine learning algorithm that was used in this research is support vector machine (SVM) and implemented using MATLAB’s classification learner. Data sets were generated using an ADALM-PLUTO SDR, and processed at baseband frequency range. Regarding the input predictors to the SVM algorithm, this research proposes multi classification features, such as wavelet transform-based, spectral-based, and higher-order statistical-based features. SVM algorithm obtained a classification-rule model with 91.4% of accuracy without any optimization applied.","PeriodicalId":269759,"journal":{"name":"2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMET53537.2021.9650496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This research discusses the implementation of machine learning for modulation classification purpose. In order to proof the concept, 6 types of modulation have been selected, i.e., BPSK, QPSK, 8-PSK, 16-QAM, BFSK, and 8-PAM. Machine learning algorithm that was used in this research is support vector machine (SVM) and implemented using MATLAB’s classification learner. Data sets were generated using an ADALM-PLUTO SDR, and processed at baseband frequency range. Regarding the input predictors to the SVM algorithm, this research proposes multi classification features, such as wavelet transform-based, spectral-based, and higher-order statistical-based features. SVM algorithm obtained a classification-rule model with 91.4% of accuracy without any optimization applied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的多特征基带调制分类
本研究讨论了以调制分类为目的的机器学习的实现。为了验证这一概念,我们选择了6种调制类型,即BPSK、QPSK、8-PSK、16-QAM、BFSK和8-PAM。本研究中使用的机器学习算法是支持向量机(SVM),使用MATLAB的分类学习器实现。使用ADALM-PLUTO SDR生成数据集,并在基带频率范围内进行处理。对于SVM算法的输入预测因子,本研究提出了基于小波变换的、基于谱的、基于高阶统计的多分类特征。SVM算法在未进行任何优化的情况下,得到准确率为91.4%的分类规则模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Fabrication Pasteurization of Fresh Milk-based on Pulsed Electric Field Technology Comparative Study of the LEACH and LEACH-PSO Protocols on Wireless Sensor Networks Moving Human Respiration Sign Detection Using mm-Wave Radar via Motion Path Reconstruction A Design Analysis of High Flow Rate Serial Connection Multi-Chamber Piezoelectric Micropump for Drug Delivery System RSS-Based improved DOA estimation using SVM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1