Domain Adaptation with Nonparametric Projections

Elif Vural
{"title":"Domain Adaptation with Nonparametric Projections","authors":"Elif Vural","doi":"10.1109/SIU.2019.8806543","DOIUrl":null,"url":null,"abstract":"Domain adaptation algorithms focus on a setting where the training and test data are sampled from related but different distributions. Various domain adaptation methods aim to align the source and target domains in a new common domain by learning a transformation or projection. In this work, we learn a nonlinear and nonparametric projection of the source and target domains into a common domain along with a linear classifier in the new domain. Experiments on image data sets show that the proposed nonlinear approach outperforms baseline domain adaptation methods based on linear transformations","PeriodicalId":326275,"journal":{"name":"2019 27th Signal Processing and Communications Applications Conference (SIU)","volume":"19 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2019.8806543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Domain adaptation algorithms focus on a setting where the training and test data are sampled from related but different distributions. Various domain adaptation methods aim to align the source and target domains in a new common domain by learning a transformation or projection. In this work, we learn a nonlinear and nonparametric projection of the source and target domains into a common domain along with a linear classifier in the new domain. Experiments on image data sets show that the proposed nonlinear approach outperforms baseline domain adaptation methods based on linear transformations
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非参数投影的领域自适应
领域自适应算法关注的是训练和测试数据从相关但不同的分布中采样的设置。各种领域自适应方法的目的是通过学习转换或投影,将源领域和目标领域对齐到一个新的公共领域中。在这项工作中,我们学习了源域和目标域的非线性和非参数投影到共同域中,并在新域中使用线性分类器。在图像数据集上的实验表明,该方法优于基于线性变换的基线域自适应方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antenna Selection on Spatial Modulation: A Machine Learning Approach Design of Phase and Amplitude Controlled Circuits for Active Phased-Array RF Beamforming Networks Classification of Extracranial and Intracranial EEG Signals by using Finite Impulse Response Filter through Ensemble Learning Visual Place Recognition by DTW-based sequence alignment Delay Analysis for Wireless Communication Systems with Caching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1