Evolving on-line prediction model dealing with industrial data sets

P. Kadlec, B. Gabrys
{"title":"Evolving on-line prediction model dealing with industrial data sets","authors":"P. Kadlec, B. Gabrys","doi":"10.1109/ESDIS.2009.4938995","DOIUrl":null,"url":null,"abstract":"In this work we present an instance of an architecture for the development of robust evolving predictive models. The architecture provides a conceptual framework for the development of such models while at the same time it provides mechanisms for the minimisation of effort needed for the development and maintenance of the models. These mechanisms deal with the model and parameter selection, model training, validation and adaptation. Another challenge for the proposed instance is to deal with an industrial data set containing several issues like missing data, outliers, drifting data, etc. This fact calls for high robustness of the deployed models. The success of the models lays in the goal oriented application of several concepts like ensemble building, local learning, parameter cross-validation which are provided by the architecture and exploited by the discussed instance.","PeriodicalId":257215,"journal":{"name":"2009 IEEE Workshop on Evolving and Self-Developing Intelligent Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Evolving and Self-Developing Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESDIS.2009.4938995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work we present an instance of an architecture for the development of robust evolving predictive models. The architecture provides a conceptual framework for the development of such models while at the same time it provides mechanisms for the minimisation of effort needed for the development and maintenance of the models. These mechanisms deal with the model and parameter selection, model training, validation and adaptation. Another challenge for the proposed instance is to deal with an industrial data set containing several issues like missing data, outliers, drifting data, etc. This fact calls for high robustness of the deployed models. The success of the models lays in the goal oriented application of several concepts like ensemble building, local learning, parameter cross-validation which are provided by the architecture and exploited by the discussed instance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进的工业数据在线预测模型
在这项工作中,我们提出了一个用于开发鲁棒进化预测模型的体系结构实例。体系结构为这些模型的开发提供了一个概念性框架,同时它为开发和维护模型所需的工作量最小化提供了机制。这些机制处理模型和参数选择、模型训练、验证和自适应。所提出的实例的另一个挑战是处理包含丢失数据、异常值、漂移数据等问题的工业数据集。这一事实要求部署的模型具有较高的健壮性。这些模型的成功之处就在于将体系结构提供的集成构建、局部学习、参数交叉验证等概念以目标为导向的应用,并通过所讨论的实例加以利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental induction of fuzzy classification rules Neural network versus behavior based approach in simulated car racing game Pattern recognition of eye movements Analysis of organized asymmetry development using artificial cellular differentiation models Evolving on-line prediction model dealing with industrial data sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1