G. Shine, S. Manipatruni, A. Chaudhry, K. Saraswat, D. Nikonov, I. Young
{"title":"Extended Hückel theory for quantum transport in magnetic tunnel junctions","authors":"G. Shine, S. Manipatruni, A. Chaudhry, K. Saraswat, D. Nikonov, I. Young","doi":"10.1109/SISPAD.2014.6931623","DOIUrl":null,"url":null,"abstract":"Spin-resolved conductivities in magnetic tunnel junctions are calculated using a semiempirical tight-binding model and non-equilibrium Green's functions. The performance of half-metallic electrodes is studied by comparing conventional Fe-MgO-Fe structures to Co2FeAl-MgO-Co2FeAl structures. The results show higher tunneling magnetoresistance and resistance-area product for Co2FeAl devices across a wide bias range.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2014.6931623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Spin-resolved conductivities in magnetic tunnel junctions are calculated using a semiempirical tight-binding model and non-equilibrium Green's functions. The performance of half-metallic electrodes is studied by comparing conventional Fe-MgO-Fe structures to Co2FeAl-MgO-Co2FeAl structures. The results show higher tunneling magnetoresistance and resistance-area product for Co2FeAl devices across a wide bias range.