Tongue Fissure Visualization with Deep Learning

Wen-Hsien Chang, H. Chu, Hen-Hong Chang
{"title":"Tongue Fissure Visualization with Deep Learning","authors":"Wen-Hsien Chang, H. Chu, Hen-Hong Chang","doi":"10.1109/TAAI.2018.00013","DOIUrl":null,"url":null,"abstract":"Tongue diagnosis is a unique practice in traditional Chinese medicine(TCM), which can be used to infer the health condition of a person. However, different TCM doctors may give different interpretations on the same tongue. If an artificial intelligence model can be developed based on a large number of doctor-interpreted tongue images, a more objective judgment will be obtained. Deep learning in artificial intelligence has excellent performance in image recognition, and feature extraction can be done automatically by deep learning without image processing experts. This study attempts to develop a deep learning model through a large number of tongue images, especially for tongue fissures. We also visualize the fissure regions with Gradient-weighted Class Activation Mapping(Grad-cam). Therefore, the model not only try to detect tongue fissures but also localize tongue fissure regions.","PeriodicalId":211734,"journal":{"name":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2018.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Tongue diagnosis is a unique practice in traditional Chinese medicine(TCM), which can be used to infer the health condition of a person. However, different TCM doctors may give different interpretations on the same tongue. If an artificial intelligence model can be developed based on a large number of doctor-interpreted tongue images, a more objective judgment will be obtained. Deep learning in artificial intelligence has excellent performance in image recognition, and feature extraction can be done automatically by deep learning without image processing experts. This study attempts to develop a deep learning model through a large number of tongue images, especially for tongue fissures. We also visualize the fissure regions with Gradient-weighted Class Activation Mapping(Grad-cam). Therefore, the model not only try to detect tongue fissures but also localize tongue fissure regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
舌裂可视化与深度学习
舌诊是中医中一项独特的实践,可以用来推断一个人的健康状况。然而,不同的中医可能对同一种舌头给出不同的解释。如果可以基于大量医生解读的舌头图像开发人工智能模型,将获得更客观的判断。人工智能中的深度学习在图像识别方面表现优异,无需图像处理专家,通过深度学习即可自动完成特征提取。本研究试图通过大量的舌头图像,特别是舌裂图像,开发一个深度学习模型。我们还使用梯度加权类激活映射(gradcam)可视化裂缝区域。因此,该模型不仅尝试检测舌裂,而且对舌裂区域进行了定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ant Colony Optimization with Negative Feedback for Solving Constraint Satisfaction Problems Using Machine Learning Algorithms in Medication for Cardiac Arrest Early Warning System Construction and Forecasting Using AHP to Choose the Best Logistics Distribution Model A Vector Mosquitoes Classification System Based on Edge Computing and Deep Learning Deep Recurrent Q-Network with Truncated History
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1