MPEC2: Multilayer and Pipeline Video Encoding on the Computing Continuum

Samira Afzal, Zahra Najafabadi Samani, Narges Mehran, C. Timmerer, R.-C. Prodan
{"title":"MPEC2: Multilayer and Pipeline Video Encoding on the Computing Continuum","authors":"Samira Afzal, Zahra Najafabadi Samani, Narges Mehran, C. Timmerer, R.-C. Prodan","doi":"10.1109/NCA57778.2022.10013519","DOIUrl":null,"url":null,"abstract":"Video streaming is the dominating traffic in today’s data-sharing world. Media service providers stream video content for their viewers, while worldwide users create and distribute videos using mobile or video system applications that significantly increase the traffic share. We propose a multilayer and pipeline encoding on the computing continuum (MPEC2) method that addresses the key technical challenge of high-price and computational complexity of video encoding. MPEC2 splits the video encoding into several tasks scheduled on appropriately selected Cloud and Fog computing instance types that satisfy the media service provider and user priorities in terms of time and cost. In the first phase, MPEC2 uses a multilayer resource partitioning method to explore the instance types for encoding a video segment. In the second phase, it distributes the independent segment encoding tasks in a pipeline model on the underlying instances. We evaluate MPEC2 on a federated computing continuum encompassing Amazon Web Services (AWS) EC2 Cloud and Exoscale Fog instances distributed in seven geographical locations. Experimental results show that MPEC2 achieves 24% faster completion time and 60% lower cost for video encoding compared to resource allocation related methods. When compared with baseline methods, MPEC2 yields 40%– 50% lower completion time and 5%–60% reduced total cost.","PeriodicalId":251728,"journal":{"name":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","volume":"49 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA57778.2022.10013519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Video streaming is the dominating traffic in today’s data-sharing world. Media service providers stream video content for their viewers, while worldwide users create and distribute videos using mobile or video system applications that significantly increase the traffic share. We propose a multilayer and pipeline encoding on the computing continuum (MPEC2) method that addresses the key technical challenge of high-price and computational complexity of video encoding. MPEC2 splits the video encoding into several tasks scheduled on appropriately selected Cloud and Fog computing instance types that satisfy the media service provider and user priorities in terms of time and cost. In the first phase, MPEC2 uses a multilayer resource partitioning method to explore the instance types for encoding a video segment. In the second phase, it distributes the independent segment encoding tasks in a pipeline model on the underlying instances. We evaluate MPEC2 on a federated computing continuum encompassing Amazon Web Services (AWS) EC2 Cloud and Exoscale Fog instances distributed in seven geographical locations. Experimental results show that MPEC2 achieves 24% faster completion time and 60% lower cost for video encoding compared to resource allocation related methods. When compared with baseline methods, MPEC2 yields 40%– 50% lower completion time and 5%–60% reduced total cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算连续体上的多层和流水线视频编码
视频流是当今数据共享世界的主导流量。媒体服务提供商为其观众提供流媒体视频内容,而全球用户使用移动或视频系统应用程序创建和分发视频,这大大增加了流量份额。本文提出了一种基于计算连续体的多层管道编码(MPEC2)方法,解决了视频编码的高成本和计算复杂性的关键技术挑战。MPEC2将视频编码分成几个任务,在适当选择的云和雾计算实例类型上调度,以满足媒体服务提供商和用户在时间和成本方面的优先级。在第一阶段,MPEC2使用多层资源划分方法来探索用于编码视频片段的实例类型。在第二阶段,它在底层实例的管道模型中分配独立的段编码任务。我们在联邦计算连续体上评估了MPEC2,包括分布在七个地理位置的亚马逊网络服务(AWS) EC2云和Exoscale Fog实例。实验结果表明,与资源分配相关的视频编码方法相比,MPEC2的完成时间提高了24%,编码成本降低了60%。与基准方法相比,MPEC2的完井时间缩短了40% - 50%,总成本降低了5%-60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SixPack v2: enhancing SixPack to avoid last generation misbehavior detectors in VANETs LoCaaS: Location-Certification-as-a-Service Detecting Causality in the Presence of Byzantine Processes: There is No Holy Grail Formal models for the verification, performance evaluation, and comparison of IoT communication protocols Swarming with (Visual) Secret (Shared) Mission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1