The neural network analysis of optical glasses transmittance

Jancikova Zora, Bošák Ondrej, Zimny Ondrej, Legouera Messaoud, M. Stanislav, Kostial Pavel, Poulain Marcel, Soltani Mohamed Toufik
{"title":"The neural network analysis of optical glasses transmittance","authors":"Jancikova Zora, Bošák Ondrej, Zimny Ondrej, Legouera Messaoud, M. Stanislav, Kostial Pavel, Poulain Marcel, Soltani Mohamed Toufik","doi":"10.1109/CARPATHIANCC.2014.6843596","DOIUrl":null,"url":null,"abstract":"The attention is devoted to the active and passive optical fibres of the suitable glasses. Because of high structural sensitivity of optical transmittance to glass composition we present sophisticated solution of experimental data evaluation to obtain way directly predict the proper glass composition-transmitance relation. In the paper we present application of artificial neural network (ANN) on relation between glass composition versus optical transmittance of the chosen glass systems of Sb2O3 - PbCl2 and Sb2O3 - PbO - M2O, where M was Na, K and Li, respectively. The developed neural model predicts optical transmittance with sufficiently small error (7%). Neural networks are able to simulate dependences which can be hardly solved by classic methods of statistic data evaluation and they are able to express more complex relations than these methods.","PeriodicalId":105920,"journal":{"name":"Proceedings of the 2014 15th International Carpathian Control Conference (ICCC)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 15th International Carpathian Control Conference (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CARPATHIANCC.2014.6843596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The attention is devoted to the active and passive optical fibres of the suitable glasses. Because of high structural sensitivity of optical transmittance to glass composition we present sophisticated solution of experimental data evaluation to obtain way directly predict the proper glass composition-transmitance relation. In the paper we present application of artificial neural network (ANN) on relation between glass composition versus optical transmittance of the chosen glass systems of Sb2O3 - PbCl2 and Sb2O3 - PbO - M2O, where M was Na, K and Li, respectively. The developed neural model predicts optical transmittance with sufficiently small error (7%). Neural networks are able to simulate dependences which can be hardly solved by classic methods of statistic data evaluation and they are able to express more complex relations than these methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光学玻璃透过率的神经网络分析
重点关注合适眼镜的有源和无源光纤。由于光学透过率对玻璃成分具有较高的结构敏感性,我们提出了复杂的实验数据评估方法,以获得直接预测玻璃成分-透过率关系的方法。本文应用人工神经网络(ANN)研究了Sb2O3 - PbCl2和Sb2O3 - PbO - M2O玻璃体系(M分别为Na、K和Li)玻璃组分与透光率之间的关系。所开发的神经模型预测光学透射率的误差足够小(7%)。神经网络能够模拟传统统计数据评估方法难以解决的依赖关系,并且能够表达比传统统计数据评估方法更复杂的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The control unit with wireless interfaces for CNC model Mine gas monitoring data analysis The neural network analysis of optical glasses transmittance Case study on an event model-based PID control of a thermal process The vision analysis of a McKibben pneumatic artificial muscle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1