{"title":"On the design of highly dispersive photonic crystal waveguides for optical delay lines","authors":"A. Hosseini, D. Kwong, Yazhao Liu, Ray T. Chen","doi":"10.1109/PHOTWTM.2010.5421932","DOIUrl":null,"url":null,"abstract":"We present a design methodology for optimized highly dispersive photonic crystal waveguide delay lines. The results indicate that higher group-indices lower the total propagation loss as long as perturbative backscattering is the dominant loss mechanism.","PeriodicalId":367324,"journal":{"name":"2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHOTWTM.2010.5421932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a design methodology for optimized highly dispersive photonic crystal waveguide delay lines. The results indicate that higher group-indices lower the total propagation loss as long as perturbative backscattering is the dominant loss mechanism.