Design of an 45nm NCFET Based Compute-in-SRAM for Energy-Efficient Machine Learning Applications

Chia-Heng Lee, Ying-Tuan Hsu, Tsung-Te Liu, T. Chiueh
{"title":"Design of an 45nm NCFET Based Compute-in-SRAM for Energy-Efficient Machine Learning Applications","authors":"Chia-Heng Lee, Ying-Tuan Hsu, Tsung-Te Liu, T. Chiueh","doi":"10.1109/APCCAS50809.2020.9301709","DOIUrl":null,"url":null,"abstract":"In memory computation for machine learning (ML) applications is a novel technique for neural-network computation accelerators, since it is highly parallel and can save a great amount of computation and memory access power. In this paper, we propose a compute in memory (CIM) design based on a new type of high-performance transistor, called Negative Capacitance Field Effect Transistor (NCFET). The proposed design demonstrates much higher energy efficiency than the CIM designs based on traditional CMOS transistors. Simulation results show that the proposed NCFET CIM achieves 3X energy reduction or 18X speed enhancement than the CMOS based CIM design.","PeriodicalId":127075,"journal":{"name":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"469 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS50809.2020.9301709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In memory computation for machine learning (ML) applications is a novel technique for neural-network computation accelerators, since it is highly parallel and can save a great amount of computation and memory access power. In this paper, we propose a compute in memory (CIM) design based on a new type of high-performance transistor, called Negative Capacitance Field Effect Transistor (NCFET). The proposed design demonstrates much higher energy efficiency than the CIM designs based on traditional CMOS transistors. Simulation results show that the proposed NCFET CIM achieves 3X energy reduction or 18X speed enhancement than the CMOS based CIM design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效节能机器学习应用的45nm NCFET sram计算设计
机器学习应用的内存计算是神经网络计算加速器的一种新技术,因为它具有高度并行性,可以节省大量的计算和内存访问功率。本文提出了一种基于新型高性能晶体管负电容场效应晶体管(NCFET)的内存计算(CIM)设计。该设计比基于传统CMOS晶体管的CIM设计具有更高的能效。仿真结果表明,与基于CMOS的CIM设计相比,所提出的NCFET CIM节能3倍,速度提高18倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
"Truth from Practice, Learning beyond Teaching" Exploration in Teaching Analog Integrated Circuit 100 MHz Random Number Generator Design Using Interleaved Metastable NAND/NOR Latches* Performance Analysis of Non-Profiled Side Channel Attacks Based on Convolutional Neural Networks A Self-coupled DT MASH ΔΣ Modulator with High Tolerance to Noise Leakage An Energy-Efficient Time-Domain Binary Neural Network Accelerator with Error-Detection in 28nm CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1