Jobandtalent at RecSys Challenge 2016

Jose Ignacio Honrado, Oscar Huarte, Cesar Jimenez, Sebastian Ortega, José R. Pérez-Agüera, Joaquín Pérez-Iglesias, Álvaro Polo, Gabriel Rodríguez
{"title":"Jobandtalent at RecSys Challenge 2016","authors":"Jose Ignacio Honrado, Oscar Huarte, Cesar Jimenez, Sebastian Ortega, José R. Pérez-Agüera, Joaquín Pérez-Iglesias, Álvaro Polo, Gabriel Rodríguez","doi":"10.1145/2987538.2987547","DOIUrl":null,"url":null,"abstract":"In this paper we describe the system built by the Jobandtalent Recommendation Team to compete in the RecSys Challenge 2016. The task consisted in predicting future interactions between Users and Items within the XING platform. The data provided by XING consists of users, items, plus interactions, and impressions of items showed to those users. We decided to apply a Learning to Rank approach to find the best combination of relevance features. We finally achieved the 11th position.","PeriodicalId":127880,"journal":{"name":"RecSys Challenge '16","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RecSys Challenge '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2987538.2987547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we describe the system built by the Jobandtalent Recommendation Team to compete in the RecSys Challenge 2016. The task consisted in predicting future interactions between Users and Items within the XING platform. The data provided by XING consists of users, items, plus interactions, and impressions of items showed to those users. We decided to apply a Learning to Rank approach to find the best combination of relevance features. We finally achieved the 11th position.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在本文中,我们描述了Jobandtalent推荐团队为参加2016年RecSys挑战赛而构建的系统。这项任务包括预测XING平台内用户和项目之间未来的交互。XING提供的数据包括用户、项目、交互以及显示给这些用户的项目印象。我们决定采用学习排序方法来找到相关特征的最佳组合。我们最终获得了第11名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A scalable, high-performance Algorithm for hybrid job recommendations A combination of simple models by forward predictor selection for job recommendation An ensemble method for job recommender systems Job recommendation with Hawkes process: an effective solution for RecSys Challenge 2016 A preliminary study on a recommender system for the job recommendation challenge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1