Eye Movement State Trajectory Estimator based on Ancestor Sampling

S. Malladi, J. Mukhopadhyay, M. Larabi, S. Chaudhury
{"title":"Eye Movement State Trajectory Estimator based on Ancestor Sampling","authors":"S. Malladi, J. Mukhopadhyay, M. Larabi, S. Chaudhury","doi":"10.1109/MMSP48831.2020.9287155","DOIUrl":null,"url":null,"abstract":"Human gaze dynamics mainly concern about the sequence of the occurrence of three eye movements: fixations, saccades, and microsaccades. In this paper, we correlate them as three different states to velocities of eye movements. We build a state trajectory estimator based on ancestor sampling (ST EAS) model, which captures the features of the human temporal gaze pattern to identify the kind of visual stimuli. We used a gaze dataset of 72 viewers watching 60 video clips which are equally split into four visual categories. Uniformly sampled velocity vectors from the training set, are used to find the best suitable parameters of the proposed statistical model. Then, the optimized model is used for both gaze data classification and video retrieval on the test set. We observed 93.265% of classification accuracy and a mean reciprocal rank of 0.888 for video retrieval on the test set. Hence, this model can be used for viewer independent video indexing for providing viewers an easier way to navigate through the contents.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Human gaze dynamics mainly concern about the sequence of the occurrence of three eye movements: fixations, saccades, and microsaccades. In this paper, we correlate them as three different states to velocities of eye movements. We build a state trajectory estimator based on ancestor sampling (ST EAS) model, which captures the features of the human temporal gaze pattern to identify the kind of visual stimuli. We used a gaze dataset of 72 viewers watching 60 video clips which are equally split into four visual categories. Uniformly sampled velocity vectors from the training set, are used to find the best suitable parameters of the proposed statistical model. Then, the optimized model is used for both gaze data classification and video retrieval on the test set. We observed 93.265% of classification accuracy and a mean reciprocal rank of 0.888 for video retrieval on the test set. Hence, this model can be used for viewer independent video indexing for providing viewers an easier way to navigate through the contents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于祖先抽样的眼动状态轨迹估计
人类注视动力学主要关注三种眼球运动的发生顺序:注视、扫视和微扫视。在本文中,我们将它们作为三种不同的状态与眼动速度相关联。我们建立了一个基于祖先采样(ST EAS)模型的状态轨迹估计器,该模型捕获了人类时间凝视模式的特征,以识别视觉刺激的类型。我们使用了一个由72名观众观看的60个视频片段组成的凝视数据集,这些视频片段被平均分为四个视觉类别。从训练集中均匀采样速度向量,以找到最合适的统计模型参数。然后,将优化后的模型用于注视数据分类和测试集上的视频检索。我们观察到在测试集上视频检索的分类准确率为93.265%,平均倒数秩为0.888。因此,这个模型可以用于独立于观看者的视频索引,为观看者提供一种更简单的方式来浏览内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging Active Perception for Improving Embedding-based Deep Face Recognition Subjective Test Dataset and Meta-data-based Models for 360° Streaming Video Quality The Suitability of Texture Vibrations Based on Visually Perceived Virtual Textures in Bimodal and Trimodal Conditions DEMI: Deep Video Quality Estimation Model using Perceptual Video Quality Dimensions Learned BRIEF – transferring the knowledge from hand-crafted to learning-based descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1