{"title":"Determination on Fluidization Velocity Types of the Continuous Refined Salt Fluidized Bed Drying","authors":"Bùi Trung Thành, L. A. Duc","doi":"10.5772/intechopen.92077","DOIUrl":null,"url":null,"abstract":"After the centrifugation stage, refined salt particles have rather high moisture content; therefore, the moist salt particles in contact with each other will stick together in a short time. In particular, the moist salt particles will stick together faster and tighter and form a larger unit when they are exposed to drying hot air. For this reason, the refined salt was dried by rotary drum dryers with vibrating balls distributed along the drum or a vibrating fluidized bed dryers. These drying methods make poor product sensory quality, low product recovery efficiency, while also lead to an increase of heat and electricity energy consumption. In order to increase the efficiency of refined salt drying technology by conventional continuous fluidized bed dryers, the chapter focuses on the study of aerodynamic properties of refined salt grains in the continuous fluidized particle layer. The content of the chapter presents theoretical and empirical methods to determine fluidization velocity types in designing a continuous fluidized bed dryer.","PeriodicalId":275613,"journal":{"name":"Current Drying Processes","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Drying Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.92077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
After the centrifugation stage, refined salt particles have rather high moisture content; therefore, the moist salt particles in contact with each other will stick together in a short time. In particular, the moist salt particles will stick together faster and tighter and form a larger unit when they are exposed to drying hot air. For this reason, the refined salt was dried by rotary drum dryers with vibrating balls distributed along the drum or a vibrating fluidized bed dryers. These drying methods make poor product sensory quality, low product recovery efficiency, while also lead to an increase of heat and electricity energy consumption. In order to increase the efficiency of refined salt drying technology by conventional continuous fluidized bed dryers, the chapter focuses on the study of aerodynamic properties of refined salt grains in the continuous fluidized particle layer. The content of the chapter presents theoretical and empirical methods to determine fluidization velocity types in designing a continuous fluidized bed dryer.