People re-identification by classification of silhouettes based on sparse representation

D. T. Cong, C. Achard, L. Khoudour
{"title":"People re-identification by classification of silhouettes based on sparse representation","authors":"D. T. Cong, C. Achard, L. Khoudour","doi":"10.1109/IPTA.2010.5586809","DOIUrl":null,"url":null,"abstract":"The research presented in this paper consists in developing an automatic system for people re-identification across multiple cameras with non-overlapping fields of view. We first propose a robust algorithm for silhouette extraction which is based on an adaptive spatio-colorimetric background and foreground model coupled with a dynamic decision framework. Such a method is able to deal with the difficult conditions of outdoor environments where lighting is not stable and distracting motions are very numerous. A robust classification procedure, which exploits the discriminative nature of sparse representation, is then presented to perform people re-identification task. The global system is tested on two real data sets recorded in very difficult environments. The experimental results show that the proposed system leads to very satisfactory results compared to other approaches of the literature.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

The research presented in this paper consists in developing an automatic system for people re-identification across multiple cameras with non-overlapping fields of view. We first propose a robust algorithm for silhouette extraction which is based on an adaptive spatio-colorimetric background and foreground model coupled with a dynamic decision framework. Such a method is able to deal with the difficult conditions of outdoor environments where lighting is not stable and distracting motions are very numerous. A robust classification procedure, which exploits the discriminative nature of sparse representation, is then presented to perform people re-identification task. The global system is tested on two real data sets recorded in very difficult environments. The experimental results show that the proposed system leads to very satisfactory results compared to other approaches of the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏表示的人物轮廓分类再识别
本文的研究内容是开发一种跨多摄像机、视场不重叠的人的自动再识别系统。本文首先提出了一种基于自适应空间比色背景前景模型和动态决策框架的鲁棒轮廓提取算法。这种方法能够处理光线不稳定和分散运动非常多的室外环境的困难条件。然后,利用稀疏表示的判别特性,提出了一种鲁棒分类方法来执行人的再识别任务。全球系统是在非常困难的环境中记录的两个真实数据集上进行测试的。实验结果表明,与文献中的其他方法相比,所提出的系统取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Audio-video surveillance system for public transportation Bayesian regularized nonnegative matrix factorization based face features learning Co-parent selection for fast region merging in pyramidal image segmentation Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity Measurement of laboratory fire spread experiments by stereovision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1