Frequency Extraction of Current Signal Spectral Components: A New Tool for the Detection of Rotor Electrical Faults in Induction Motors

P. Panagiotou, I. Arvanitakis, N. Lophitis, K. Gyftakis
{"title":"Frequency Extraction of Current Signal Spectral Components: A New Tool for the Detection of Rotor Electrical Faults in Induction Motors","authors":"P. Panagiotou, I. Arvanitakis, N. Lophitis, K. Gyftakis","doi":"10.1109/DEMPED.2019.8864893","DOIUrl":null,"url":null,"abstract":"This work expands the classical current signature analysis in induction machines in a two-stage spectral decomposition manner. The proposed methodology can be summarized in two main steps: initially, the current signals are analyzed using a time frequency representation, with the analysis focusing on the steady-state regime; thereafter, frequency extraction is applied to the spectral signatures of interest, aiming to identify specific fault related harmonic subcomponents induced by the fault related speed ripple effect. The proposed approach is verified experimentally on a 4 kW induction motor.","PeriodicalId":397001,"journal":{"name":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"44 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2019.8864893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work expands the classical current signature analysis in induction machines in a two-stage spectral decomposition manner. The proposed methodology can be summarized in two main steps: initially, the current signals are analyzed using a time frequency representation, with the analysis focusing on the steady-state regime; thereafter, frequency extraction is applied to the spectral signatures of interest, aiming to identify specific fault related harmonic subcomponents induced by the fault related speed ripple effect. The proposed approach is verified experimentally on a 4 kW induction motor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电流信号频谱分量的频率提取:一种检测异步电动机转子电气故障的新工具
这项工作扩展了经典的电流特征分析在感应电机在两阶段的频谱分解方式。所提出的方法可以概括为两个主要步骤:首先,使用时频表示对电流信号进行分析,重点分析稳态状态;然后,对感兴趣的频谱特征进行频率提取,旨在识别由故障相关速度纹波效应引起的特定故障相关谐波子分量。该方法在一台4kw异步电动机上进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rotating HF signal injection method improvement based on robust phase-shift estimator for self-sensing control of IPMSM Transient analysis of the external magnetic field via MUSIC methods for the diagnosis of electromechanical faults in induction motors Optimization of magnetic flux paths in transverse flux machines through the use of iron wire wound materials A Survey of Multi-Sensor Systems for Online Fault Detection of Electric Machines On-line Transmission Line Fault Classification using Long Short-Term Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1